
When an object is projected forward at an inclination of θ from the horizontal, traveling at an initial velocity v_0 , the motion of the object is referred to as projectile motion.

When an object is projected forward at an inclination of θ from the horizontal, traveling at an initial velocity v_0 , the motion of the object is referred to as projectile motion.

When an object is projected forward at an inclination of θ from the horizontal, traveling at an initial velocity v_0 , the motion of the object is referred to as projectile motion.

When an object is projected forward at an inclination of θ from the horizontal, traveling at an initial velocity v_0 , the motion of the object is referred to as projectile motion.

$$x = (v_0 \cos \theta)t$$
 $v_0 = \text{initial velocity}$
 $\theta = \text{angle with horizontal}$
 $t = \text{time (seconds)}$

$$y = -\frac{1}{2}gt^2 + (v_0 \sin \theta)t + h$$

 $g = \text{earth's gravity constant}$
 $g \approx 32 \text{ ft/sec}^2 \text{ or } 9.8 \text{ m/sec}^2$
 $t = \text{time (seconds)}$
 $v_0 = \text{initial velocity}$
 $\theta = \text{angle with horizontal}$
 $h = \text{initial height of the object}$

Bob hits a golf ball with an initial velocity of 160 ft/sec at an angle of 30°.

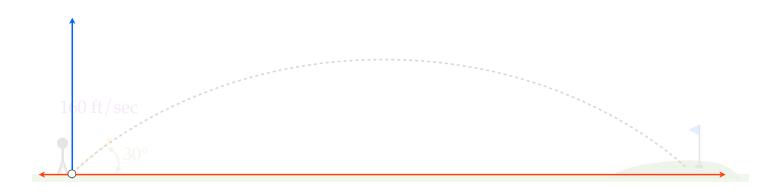
$$x = (v_0 \cos \theta)t \qquad y = -\frac{1}{2}gt^2 + (v_0 \sin \theta)t + h$$

Find the equations to describe the x and y position of the ball relative to time.

Bob hits a golf ball with an initial velocity of 160 ft/sec at an angle of 30°.

$$x = 80\sqrt{3} \cdot t \qquad \qquad y = -16t^2 + 80t$$

How long is the ball in the air? Set y = 0, solve for t


y = 0 means the ball is on the ground

Bob hits a golf ball with an initial velocity of 160 ft/sec at an angle of 30°.

$$x = 80\sqrt{3} \cdot t \qquad \qquad y = -16t^2 + 80t$$

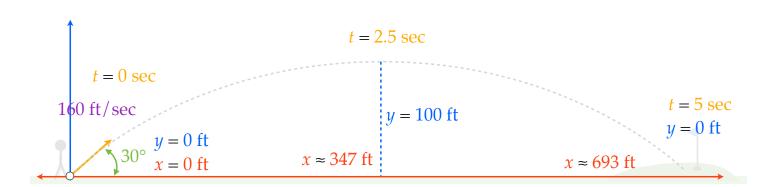

How long is the ball in the air? The ball is in the air for 5 sec

Bob hits a golf ball with an initial velocity of 160 ft/sec at an angle of 30°.

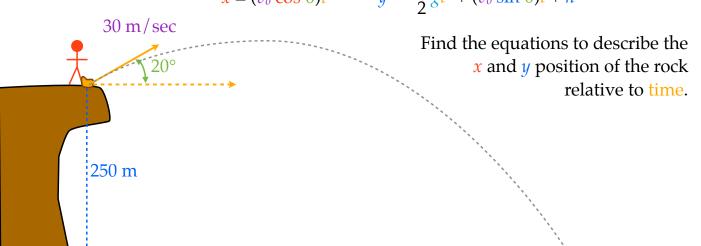
$$x = 80\sqrt{3} \cdot t \qquad \qquad y = -16t^2 + 80t$$

When is the ball at its maximum height? Find vertex of $y = -16t^2 + 80t$ What is the balls maximum height?

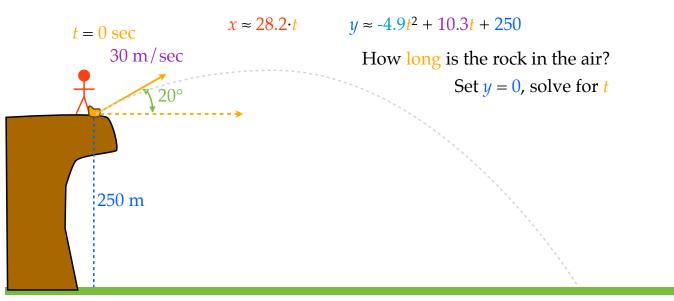
Bob hits a golf ball with an initial velocity of 160 ft/sec at an angle of 30°.


$$x = 80\sqrt{3} \cdot t \qquad \qquad y = -16t^2 + 80t$$

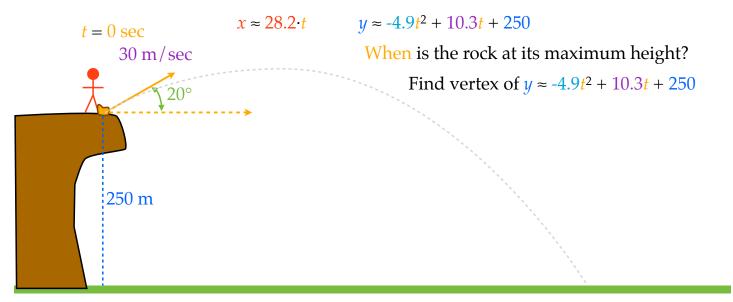
How far does the ball travel from Bob? Find x when t = 5 sec

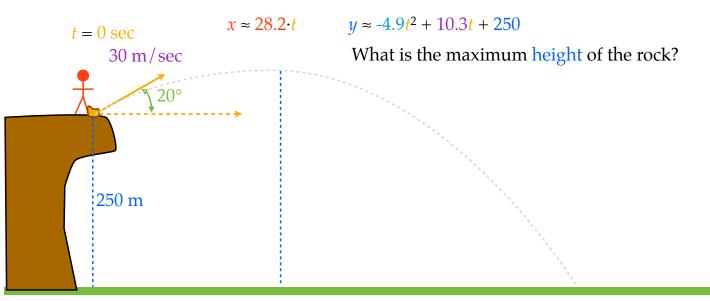

Bob hits a golf ball with an initial velocity of 160 ft/sec at an angle of 30°.

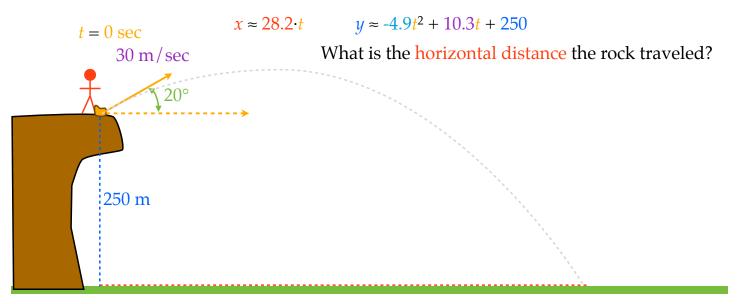
$$x = 80\sqrt{3} \cdot t \qquad \qquad y = -16t^2 + 80t$$



Bob kicks a rock off a cliff 250 m high with an v_0 of 30 m/sec at an angle of 20°.


$$x = (v_0 \cos \theta)t \qquad y = -\frac{1}{2}gt^2 + (v_0 \sin \theta)t + h$$


Bob kicks a rock off a cliff 250 m high with an v_0 of 30 m/sec at an angle of 20°.


Bob kicks a rock off a cliff 250 m high with an v_0 of 30 m/sec at an angle of 20°.

Bob kicks a rock off a cliff 250 m high with an v_0 of 30 m/sec at an angle of 20°.

Bob kicks a rock off a cliff 250 m high with an v_0 of 30 m/sec at an angle of 20°.

Bob kicks a rock off a cliff 250 m high with an v_0 of 30 m/sec at an angle of 20°.

When an object is projected forward at an inclination of θ from the horizontal, traveling at an initial velocity v_o , the motion of the object is referred to as projectile motion.

$$x = (v_0 \cos \theta)t$$

$$y = -\frac{1}{2}gt^2 + (v_0 \sin \theta)t + h$$

$$g = \text{earth's gravity constant}$$

$$g \approx 32 \text{ ft/sec}^2 \text{ or } 9.8 \text{ m/sec}^2$$