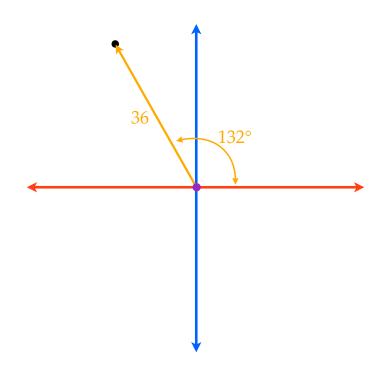
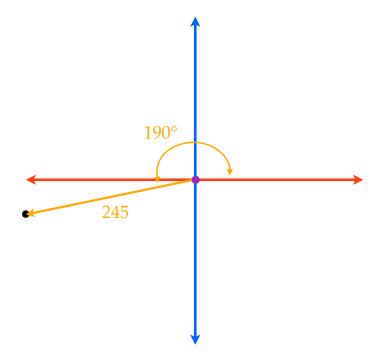

Given $\|\mathbf{v}\|$ and direction of \mathbf{v} , θ , then...

$$a = \|\mathbf{v}\| \cos \theta$$
 $b = \|\mathbf{v}\| \sin \theta$


$$\|\mathbf{v}\| = 100 \qquad \theta = 30^{\circ}$$

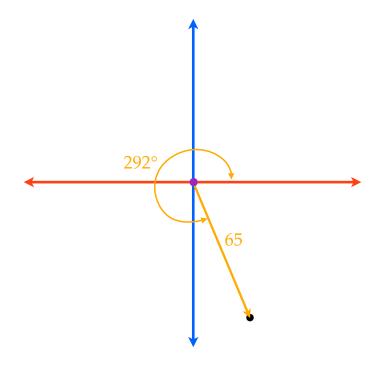
Given $\|\mathbf{v}\|$ and direction of \mathbf{v} , θ , then...

$$a = \|\mathbf{v}\| \cos \theta$$
 $b = \|\mathbf{v}\| \sin \theta$


$$\|\mathbf{v}\| = 36$$
 $\theta = 132^{\circ}$

Given $\|\mathbf{v}\|$ and direction of $\mathbf{v}, \boldsymbol{\theta}$, then...

$$a = \|\mathbf{v}\| \cos \theta$$
 $b = \|\mathbf{v}\| \sin \theta$


$$\|\mathbf{v}\| = 245$$
 $\theta = 190^{\circ}$

Given $\|\mathbf{v}\|$ and direction of $\mathbf{v}, \boldsymbol{\theta}$, then...

$$a = \|\mathbf{v}\| \cos \theta$$
 $b = \|\mathbf{v}\| \sin \theta$

$$\|\mathbf{v}\| = 65$$
 $\theta = 292^{\circ}$

© iTutoring.com

Finding the Horizontal and Vertical Components of a Vector

Given $\|\boldsymbol{v}\|$ and direction of $\boldsymbol{v},\boldsymbol{\theta}$, then...

$$a = \|\mathbf{v}\| \cos \theta$$
 $b = \|\mathbf{v}\| \sin \theta$

$$\mathbf{v} = \langle a, b \rangle$$
 $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$