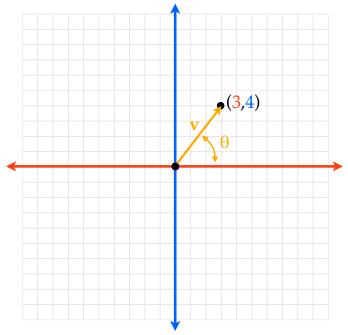
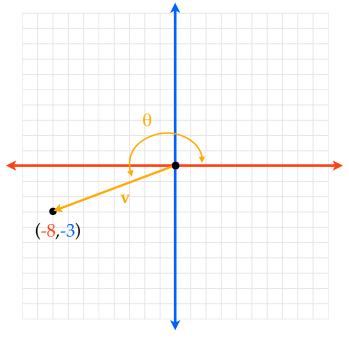

Date ______ Period _____

Given \mathbf{v} is in standard position and expressed as $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, then...


$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$

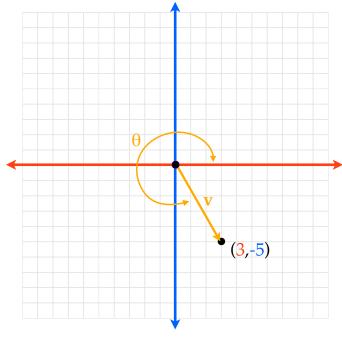
Given \mathbf{v} is in standard position and expressed as $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, then...

$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$


$$\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$$

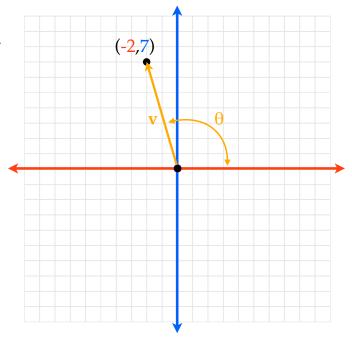
Given \mathbf{v} is in standard position and expressed as $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, then...

$$\tan \theta = \frac{b}{a}$$
 $-90^{\circ} < \theta < 90^{\circ}$


$$\mathbf{v} = -8\mathbf{i} - 3\mathbf{j}$$

Given \mathbf{v} is in standard position and expressed as $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, then...

$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$


$$\mathbf{v} = 3\mathbf{i} - 5\mathbf{j}$$

Given \mathbf{v} is in standard position and expressed as $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, then...

$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$

$$\mathbf{v} = -2\mathbf{i} + 7\mathbf{j}$$

Given \mathbf{v} is in standard position and expressed as $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, then...

$$\tan \theta = \frac{b}{a} \qquad -90^{\circ} < \theta < 90^{\circ}$$