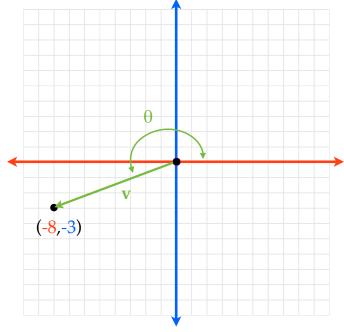
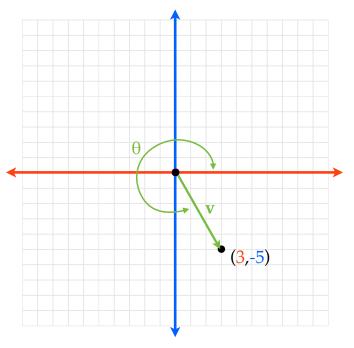

Given **v** is in standard position and expressed in component form $\mathbf{v} = \langle a, b \rangle$, then...

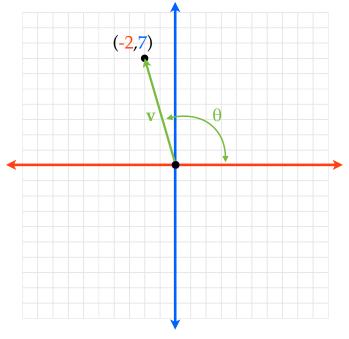
$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$


Given \mathbf{v} is in standard position and expressed in component form $\mathbf{v} = \langle a, b \rangle$, then...

$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$


Given \mathbf{v} is in standard position and expressed in component form $\mathbf{v} = \langle a, b \rangle$, then...

$$\tan \theta = \frac{b}{a}$$
 $-90^{\circ} < \theta < 90^{\circ}$


Given **v** is in standard position and expressed in component form $\mathbf{v} = \langle a, b \rangle$, then...

$$\tan \theta = \frac{b}{a}$$
 $-90^{\circ} < \theta < 90^{\circ}$

Given \mathbf{v} is in standard position and expressed in component form $\mathbf{v} = \langle a, b \rangle$, then...

$$\tan \theta = \frac{b}{a} \quad -90^{\circ} < \theta < 90^{\circ}$$

Given \mathbf{v} is in standard position and expressed in component form $\mathbf{v} = \langle a, b \rangle$, then...

$$\tan \theta = \frac{b}{a} \qquad -90^{\circ} < \theta < 90^{\circ}$$