
Name	
Date	Period

Vectors have a starting and ending point A vector is a quantity with magnitude and direction

Given scalar α and \mathbf{v} ,

1. if $\alpha > 0$, then $\alpha \mathbf{v}$ has a magnitude α times that of \mathbf{v} in the same direction as \mathbf{v} .			
v			
		$\alpha = 3$	

Given scalar α and \mathbf{v} ,

1. if $\alpha > 0$, then $\alpha \mathbf{v}$ has a magnitude α times that of \mathbf{v} in the same direction as \mathbf{v} .

2. if α < 0, then α **v** has a magnitude $|\alpha|$ times that of **v** in the opposite direction as **v**.

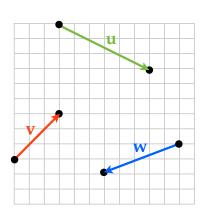
.....

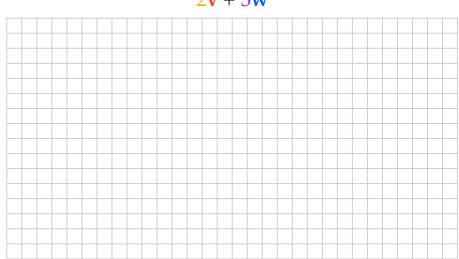
Given scalar α and \mathbf{v} ,

1. if $\alpha > 0$, then $\alpha \mathbf{v}$ has a magnitude α times that of \mathbf{v} in the same direction as \mathbf{v} .

2. if α < 0, then α **v** has a magnitude $|\alpha|$ times that of **v** in the opposite direction as **v**.

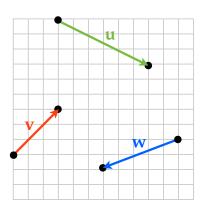
3. if $\alpha = 0$ or if $\mathbf{v} = \mathbf{0}$, the $\alpha \mathbf{v} = \mathbf{0}$.


Given scalar α and β , \mathbf{v} and \mathbf{w} , scalar multiplication has the following properties.

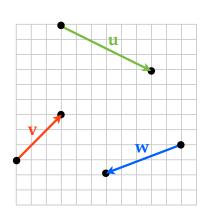

$$0\mathbf{v} = \mathbf{0}$$
 $1\mathbf{v} = \mathbf{v}$ $-1\mathbf{v} = -\mathbf{v}$
$$(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$$
 $\alpha(\mathbf{v} + \mathbf{w}) = \alpha\mathbf{v} + \alpha\mathbf{w}$

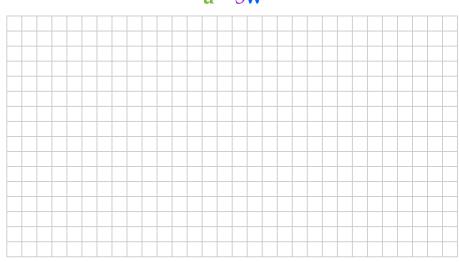
$$\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$$

Given **u**, **v** and **w**, complete the following.

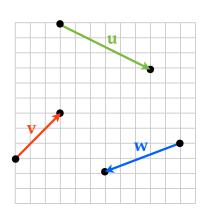


Given \mathbf{u} , \mathbf{v} and \mathbf{w} , complete the following.


$$3u + 2v$$



Given \mathbf{u} , \mathbf{v} and \mathbf{w} , complete the following.


$$u - 3w$$



Given \mathbf{u} , \mathbf{v} and \mathbf{w} , complete the following.

