Let θ be an angle in standard position and P(x,y) lie on the terminal side of θ a distance of *r* from the origin such that $r = \sqrt{x^2 + y^2}$, then...

$$\sin \theta = \frac{y}{r}$$

$$\csc \theta = \frac{r}{y}$$
 $y \neq 0$ reciprocal of $\sin \theta$

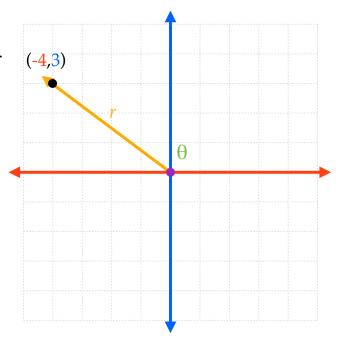
$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{r}{x}$$
 $x \neq 0$ reciprocal of $\cos \theta$

$$\tan \theta = \frac{y}{x} \quad x \neq 0$$

$$\tan \theta = \frac{y}{x}$$
 $x \neq 0$ $\cot \theta = \frac{x}{y}$ $y \neq 0$ reciprocal of $\tan \theta$

Let (-4,3) lie on the terminal side of θ in standard position. Find all six trig values of θ .


$$\csc \theta = \frac{r}{y}$$

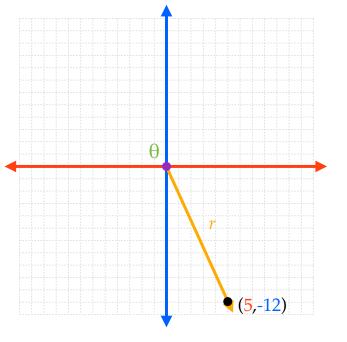
$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x}$$

$$\cot \theta = \frac{x}{y}$$

Let (5,-12) lie on the terminal side of θ in standard position. Find all six trig values of θ .


$$\csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r}$$

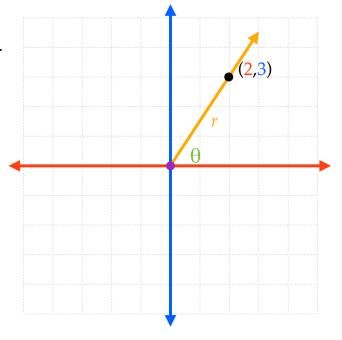
$$\sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x}$$

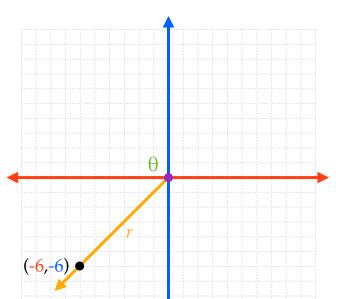
$$\cot \theta = \frac{x}{y}$$

Let (2,3) lie on the terminal side of θ in standard position. Find all six trig values of θ .

$$\sin \theta = \frac{y}{r}$$


$$\csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r}$$


$$\sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x}$$

$$\cot \theta = \frac{x}{y}$$

Let (-6,-6) lie on the terminal side of θ in standard position. Find all six trig values of θ .

$$\sin \theta = \frac{y}{r}$$

$$\csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x}$$

$$\cot \theta = \frac{x}{y}$$

Let θ be an angle in standard position and P(x,y) lie on the terminal side of θ a distance of *r* from the origin such that $r = \sqrt{x^2 + y^2}$, then...

$$\sin \theta = \frac{y}{r}$$

$$\csc \theta = \frac{r}{y}$$
 $y \neq 0$ reciprocal of $\sin \theta$

$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{r}{x}$$
 $x \neq 0$ reciprocal of $\cos \theta$

$$\tan \theta = \frac{y}{x} \quad x \neq 0$$

$$\tan \theta = \frac{y}{x}$$
 $x \neq 0$ $\cot \theta = \frac{x}{y}$ $y \neq 0$ reciprocal of $\tan \theta$