\qquad
\qquad Period \qquad

Linear Speed

The distance an object moves divided by the elapsed time.

$$
\begin{gathered}
v=\frac{S}{t} \\
v=\text { linear speed } \quad s=\text { distance traveled } t=\text { time }
\end{gathered}
$$

500 miles in 8 hours
300 feet in 25 seconds

Angular Speed
The angle (measured in radians) an object moves divided by the elapsed time.

$$
\begin{aligned}
& \omega=\frac{\theta}{t} \\
& \omega=\text { angular speed } \quad \theta=\text { angle (in radians) } \quad t=\text { time } \\
& 20 \text { radians in } 2 \text { minutes } \\
& 1080^{\circ} \text { in } 15 \text { seconds } \\
& 1080^{\circ}=6 \pi
\end{aligned}
$$

Converting Revolutions per Minute to an Angular Speed

40 rpm

40 rpm

Relating Linear Speed and Angular Speed

Linear Speed

$$
\begin{array}{rlrl}
v=\frac{s}{t} \quad v=\frac{r \cdot \theta}{t} & v=r \cdot \frac{\theta}{t} & v & =r \cdot \omega \\
\text { Arc Length } & \omega=\frac{\theta}{t} & v & =\text { linear speed } \\
s=r \cdot \theta & & r=\text { radius of circle } \\
& \omega=\text { angular speed }
\end{array}
$$

orange circle is 3 ft and the radius of the purple circle is 12 ft . What is the linear speed of both objects.

$$
v=r \cdot \omega
$$

An object is traveling on a circular path with a radius of 2 feet. If the object travels 8 feet in a minute, what is the linear speed of the object? What is the angular speed?

The diameter of a bicycle wheel is 26 inches. If the wheels are turning at 400 rpm , how fast is the bicycle going?

$$
v=r \cdot \omega
$$

Two cars are driving on two different circular tracks at the same linear speed. If one car is covering 16 laps / hour on a track with a radius of 0.7 miles, how many laps/ hour is the other car traveling on a track with radius 0.5 miles.

Linear Speed

$$
v=\frac{s}{t}
$$

Angular Speed
$\omega=\frac{\theta}{t}$

Linear Speed in Circular motion

$$
v=r \cdot \omega
$$

