How to create an angle measuring 1 radian θ has a measure of 1 radian

How to create an angle measuring 1 radian θ has a measure of 1 radian

One revolution has a measure of 2π radians θ has a measure of 2π radians

How to create an angle measuring 1 radian θ has a measure of 1 radian

One revolution has a measure of 2π radians θ has a measure of 2π radians

 $\frac{1}{2}$ revolution has a measure of π radians α has a measure of π radians

How to create an angle measuring 1 radian θ has a measure of 1 radian

One revolution has a measure of 2π radians θ has a measure of 2π radians

- $\frac{1}{2}$ revolution has a measure of π radians α has a measure of π radians
- $\frac{1}{4}$ revolution has a measure of $\frac{\pi}{2}$ radians β has a measure of $\frac{\pi}{2}$ radians

if $\theta = \frac{\pi}{2}$, θ lies on the positive *y*-axis θ is a right angle

Given $\boldsymbol{\theta}$ is in standard position...

if $\theta = \frac{\pi}{2}$, θ lies on the positive *y*-axis θ is a right angle

if $\theta = \pi$, θ lies on the negative *x*-axis θ is a straight angle

if $\theta = \frac{\pi}{2}$, θ lies on the positive *y*-axis θ is a right angle

if $\theta = \pi$, θ lies on the negative *x*-axis θ is a straight angle

if $\theta = \frac{3\pi}{2}$, θ lies on the negative *y*-axis

Given θ is in standard position...

if $\theta = \frac{\pi}{2}$, θ lies on the positive *y*-axis θ is a right angle

if $\theta = \pi$, θ lies on the negative *x*-axis θ is a straight angle

if $\theta = \frac{3\pi}{2}$, θ lies on the negative *y*-axis

if $\theta = 2\pi$, θ lies on the positive *x*-axis Quadrant Angles

if
$$0 < \theta < \frac{\pi}{2}$$
 , θ lies in quadrant 1

Given θ is in standard position...

if
$$0 < \theta < \frac{\pi}{2}$$
 , θ lies in quadrant 1

if
$$\frac{\pi}{2} < \theta < \pi$$
, θ lies in quadrant 2

if
$$0 < \theta < \frac{\pi}{2}$$
, θ lies in quadrant 1

if
$$\frac{\pi}{2} < \theta < \pi$$
, θ lies in quadrant 2

if
$$\pi < \theta < \frac{3\pi}{2}$$
, θ lies in quadrant 3

Given θ is in standard position...

if
$$0 < \theta < \frac{\pi}{2}$$
, θ lies in quadrant 1

if
$$\frac{\pi}{2} < \theta < \pi$$
, θ lies in quadrant 2

if
$$\pi < \theta < \frac{3\pi}{2}$$
, θ lies in quadrant 3

if
$$\frac{3\pi}{2} < \theta < 2\pi$$
, θ lies in quadrant 4

$$\frac{2\pi}{3} = 120^{\circ} \quad \frac{3\pi}{4} = 135^{\circ} \quad \frac{3\pi}{4} = 135^{\circ} \quad \frac{5\pi}{6} = 150^{\circ} \quad \frac{\pi}{4} = 45^{\circ}$$

$$\frac{5\pi}{6} = 150^{\circ} \quad \frac{\pi}{4} = 45^{\circ}$$

Common Angles in Radian Form