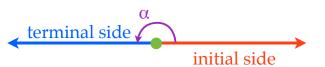

By rotating the terminal side of an angle counterclockwise one revolution, where it coincides with the initial side...

 θ will have a measure of one revolution

One revolution has a measure of 360°

 θ has a measure of 360°

By rotating the terminal side of an angle counterclockwise one revolution, where it coincides with the initial side...

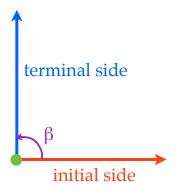

 θ will have a measure of one revolution

One revolution has a measure of 360°

 θ has a measure of 360°

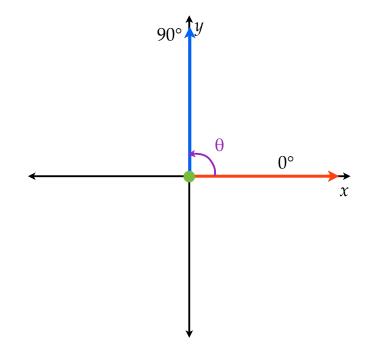
 $\frac{1}{2}$ revolution has a measure of 180°

 α has a measure of 180°

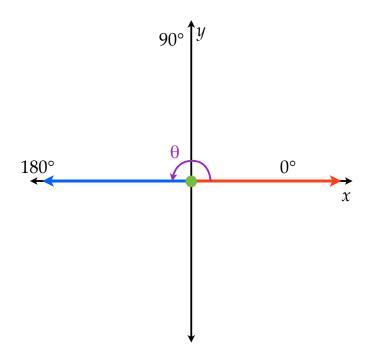

By rotating the terminal side of an angle counterclockwise one revolution, where it coincides with the initial side...

 θ will have a measure of one revolution

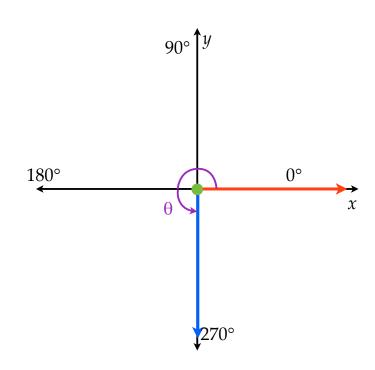
One revolution has a measure of 360° θ has a measure of 360°


 $\frac{1}{2}$ revolution has a measure of 180° α has a measure of 180°

 $\frac{1}{4}$ revolution has a measure of 90° β has a measure of 90°


Given θ is in standard position...

if $\theta = 90^{\circ}$, θ lies on positive *y*-axis θ is a right angle

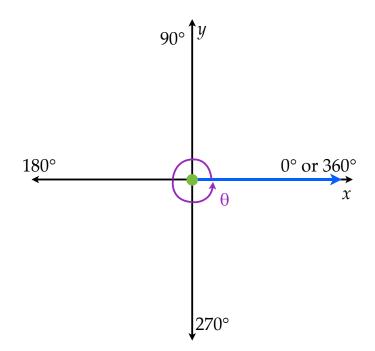

Given θ is in standard position...

- if $\theta = 90^{\circ}$, θ lies on positive *y*-axis θ is a right angle
- if $\theta = 180^{\circ}$, θ lies on negative *x*-axis θ is a straight angle

Given θ is in standard position...

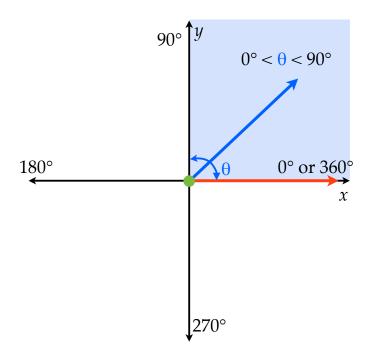
- if $\theta = 90^{\circ}$, θ lies on positive *y*-axis θ is a right angle
- if $\theta = 180^{\circ}$, θ lies on negative *x*-axis θ is a straight angle
- if $\theta = 270^{\circ}$, θ lies on negative *y*-axis

Given θ is in standard position...

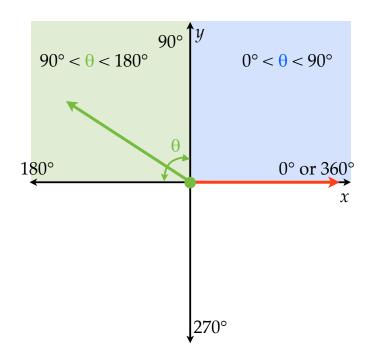

if $\theta = 90^{\circ}$, θ lies on positive *y*-axis θ is a right angle

if $\theta = 180^{\circ}$, θ lies on negative *x*-axis θ is a straight angle

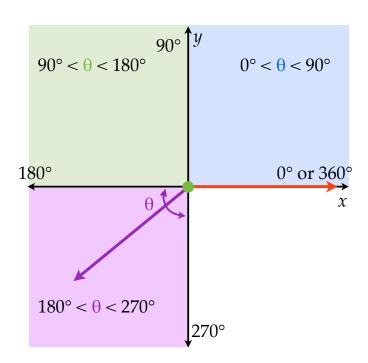
if $\theta = 270^{\circ}$, θ lies on negative *y*-axis


if $\theta = 360^{\circ}$, θ lies on positive *x*-axis

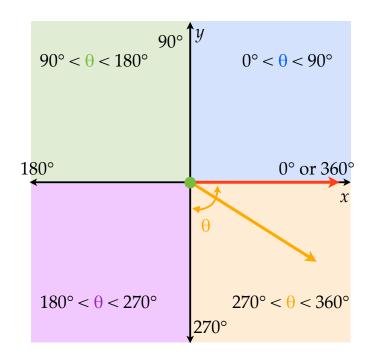
Quadrant Angles

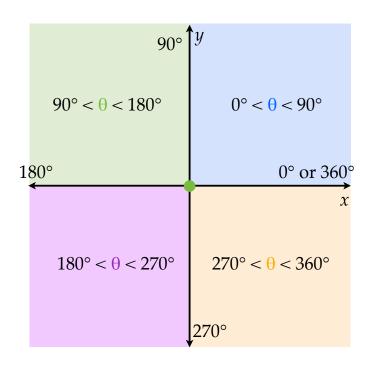

Given $\boldsymbol{\theta}$ is in standard position...

if $0^{\circ} < \theta < 90^{\circ}$, θ lies in quadrant 1


Given $\boldsymbol{\theta}$ is in standard position...

if $0^{\circ} < \theta < 90^{\circ}$, θ lies in quadrant 1 if $90^{\circ} < \theta < 180^{\circ}$, θ lies in quadrant 2


Given $\boldsymbol{\theta}$ is in standard position...


if $0^{\circ} < \theta < 90^{\circ}$, θ lies in quadrant 1 if $90^{\circ} < \theta < 180^{\circ}$, θ lies in quadrant 2 if $180^{\circ} < \theta < 270^{\circ}$, θ lies in quadrant 3

Given θ is in standard position...

if $0^{\circ} < \theta < 90^{\circ}$, θ lies in quadrant 1 if $90^{\circ} < \theta < 180^{\circ}$, θ lies in quadrant 2 if $180^{\circ} < \theta < 270^{\circ}$, θ lies in quadrant 3 if $270^{\circ} < \theta < 360^{\circ}$, θ lies in quadrant 4

