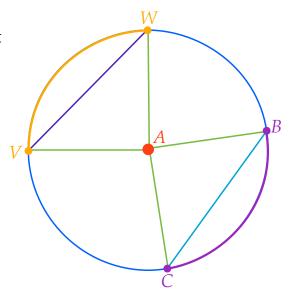
Central Angle

A central angle is an angle whose vertex is at the center of the circle.

 $\angle VAW$ and $\angle CAB$ are central angles

Arc


An arc is an unbroken piece of a circle.

 \widehat{VW} and \widehat{CB} are arcs

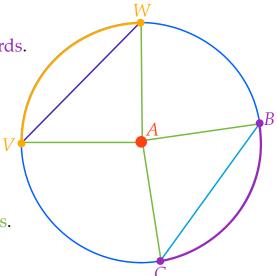
Chord

A chord of a circle is a segment whose endpoints are on the circle.

 \overline{VW} and \overline{CB} are chords

Conclusions

Congruent central angles have congruent chords.


if $\angle VAW \cong \angle CAB$, then $\overline{VW} \cong \overline{CB}$

Congruent chords have congruent arcs.

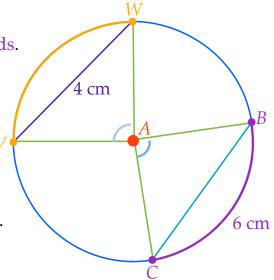
if
$$\overline{VW} \cong \overline{CB}$$
, then $\overline{VW} \cong \overline{CB}$

Congruent arcs have congruent central angles.

if $\overrightarrow{VW} \cong \overrightarrow{CB}$, then $\angle \overrightarrow{VAW} \cong \angle \overrightarrow{CAB}$

Conclusions

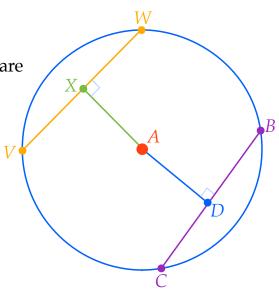
Congruent central angles have congruent chords.

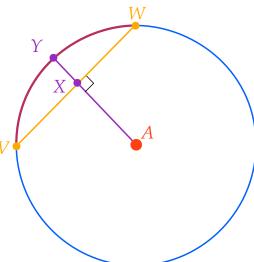

if $\angle VAW \cong \angle CAB$, then $\overline{VW} \cong \overline{CB}$

Congruent chords have congruent arcs.

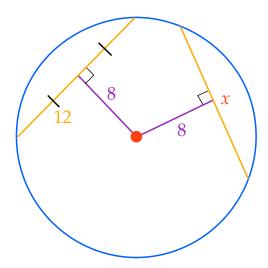
if
$$\overline{VW} \cong \overline{CB}$$
, then $\overline{VW} \cong \overline{CB}$

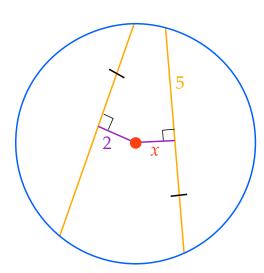
Congruent arcs have congruent central angles.


if
$$\overrightarrow{VW} \cong \overrightarrow{CB}$$
, then $\angle \overrightarrow{VAW} \cong \angle \overrightarrow{CAB}$

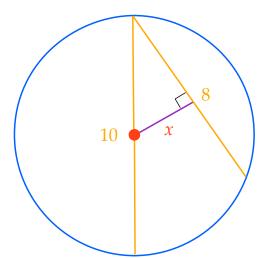

Two chords are congruent <u>if and only if</u> they are equidistant from the <u>center</u> of the <u>circle</u>.

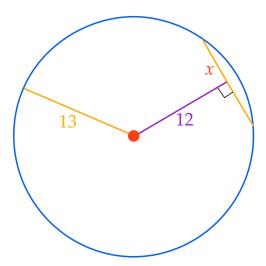
if
$$\overline{VW} \cong \overline{CB}$$
,


if
$$AX = AD$$
,



A radius perpendicular to a chord bisects the chord and its arc.




Solve for the value of x.

Solve for the value of x.

