
A rhombus is a parallelogram with four congruent sides.

- 1. Opposite Sides are congruent
- 2. Opposite angles are congruent
- 3. The diagonals bisect each other
- 4. Consecutive Angles are Supplementary

Rhombus

A rhombus is a parallelogram with four congruent sides.

1. Opposite Sides are congruent

$$\overline{AB} \cong \overline{DC}$$
 $\overline{DA} \cong \overline{CB}$

2. Opposite angles are congruent

$$\angle A \cong \angle C$$
 $\angle D \cong \angle B$

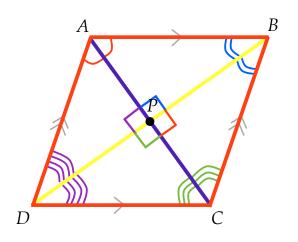
3. The diagonals bisect each other

$$\overline{AP} \cong \overline{CP}$$
 $\overline{DP} \cong \overline{BP}$

4. Consecutive Angles are Supplementary

$$\angle A$$
 and $\angle D$ are suppl. $\angle A$ and $\angle B$ are suppl.

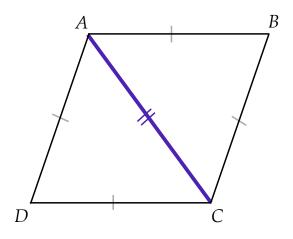
$$\angle B$$
 and $\angle C$ are suppl. $\angle D$ and $\angle C$ are suppl.


A rhombus is a parallelogram with four congruent sides.

- 1. All sides are congruent
- 2. Diagonals are perpendicular
- 3. Diagonals bisect angles

Rhombus

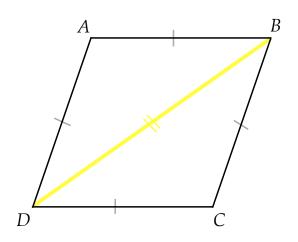
A rhombus is a parallelogram with four congruent sides.


1. All sides are congruent

$$\overline{AB} \cong \overline{BC} \cong \overline{DC} \cong \overline{AD}$$

2. Diagonals are perpendicular $\angle APB$ is a right angle $\angle CPD$ is a right angle ∠BPC is a right angle ∠DPA is a right angle

3. Diagonals bisect angles

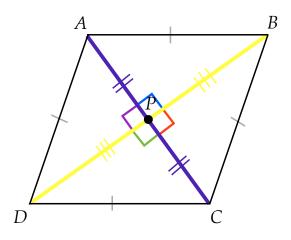

A rhombus is a parallelogram with four congruent sides.

Triangles within Rhombi $\triangle ABC$ and $\triangle CDA$ are isosceles triangles $\triangle ABC \cong \triangle CDA$

Rhombus

A rhombus is a parallelogram with four congruent sides.

Triangles within Rhombi


 $\triangle ABC$ and $\triangle CDA$ are isosceles triangles

 $\triangle ABC \cong \triangle CDA$

 $\triangle BAD$ and $\triangle DCB$ are isosceles triangles

 $\Delta BAD \cong \Delta DCB$

A rhombus is a parallelogram with four congruent sides.

Triangles within **Rhombi**

 $\triangle ABC$ and $\triangle CDA$ are isosceles triangles

 $\triangle ABC \cong \triangle CDA$

 $\triangle BAD$ and $\triangle DCB$ are isosceles triangles

 $\Delta BAD \cong \Delta DCB$

 $\triangle APD$, $\triangle BPC$, $\triangle APB$, $\triangle DPC$ are right

triangles

 $\triangle APD \cong \triangle BPC \cong \triangle APB \cong \triangle DPC$