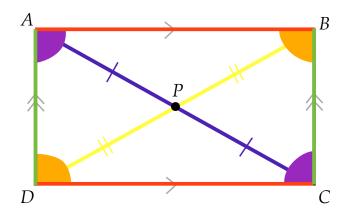

Rectangle


A rectangle is a special type of parallelogram.

- 1. Opposite Sides are congruent
- 2. Opposite angles are congruent
- 3. The diagonals bisect each other
- 4. Consecutive Angles are Supplementary

Rectangle

A rectangle is a special type of parallelogram.

1. Opposite Sides are congruent

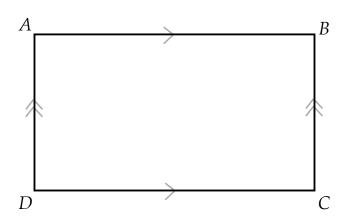
$$\overline{AB} \cong \overline{DC} \quad \overline{DA} \cong \overline{CB}$$

2. Opposite angles are congruent

$$\angle A \cong \angle C$$
 $\angle D \cong \angle B$

3. The diagonals bisect each other

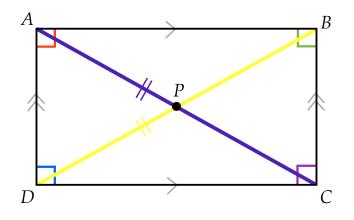
$$\overline{AP} \cong \overline{CP}$$
 $\overline{DP} \cong \overline{BP}$


4. Consecutive Angles are Supplementary

$$\angle A$$
 and $\angle D$ are suppl. $\angle A$ and $\angle B$ are suppl.

$$\angle B$$
 and $\angle C$ are suppl. $\angle D$ and $\angle C$ are suppl.

Rectangle

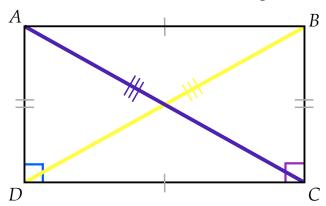

A rectangle is a special type of parallelogram.

- 1. All angles are right angles
- 2. Diagonals are congruent

Rectangle

A rectangle is a special type of parallelogram.

- 1. All angles are right angles
- $\angle A$ is a right angle $\angle C$ is a right angle
- $\angle B$ is a right angle $\angle D$ is a right angle
 - 2. Diagonals are congruent

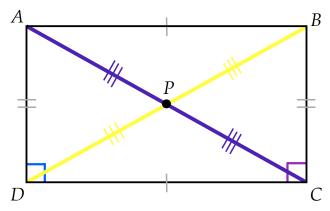

$$\overline{AC} \cong \overline{BD}$$

$$\overline{AP} \cong \overline{CP} \cong \overline{DP} \cong \overline{BP}$$

Rectangle

A rectangle is a special type of parallelogram.

Triangles within rectangles



 $\triangle ACD$ and $\triangle BDC$ are right triangles $\triangle ACD \cong \triangle BDC$

Rectangle

A rectangle is a special type of parallelogram.

Triangles within rectangles

 $\triangle ACD$ and $\triangle BDC$ are right triangles

 $\triangle ACD \cong \triangle BDC$

 $\triangle APD$, $\triangle BPC$, $\triangle APB$ and $\triangle DPC$ are isosceles triangles

 $\triangle APD \cong \triangle BPC$

 $\Delta APB \cong \Delta DPC$