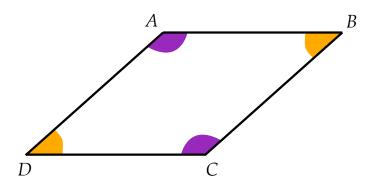
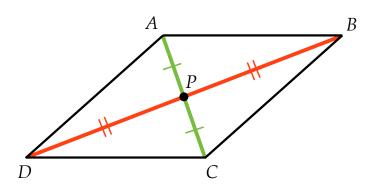

Parallelogram

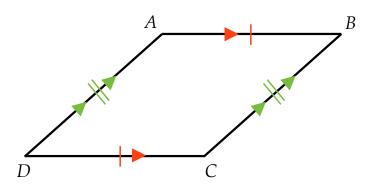
A parallelogram is a quadrilateral with two pairs opposite sides being parallel ABCD is a parallelogram



If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.


Statements	Reasons	Given: $\overline{AB} \cong \overline{DC}$; $\overline{AD} \cong \overline{BC}$
		Prove: <i>ABCD</i> is a parallelogram
		$A \longrightarrow B$ $D \longrightarrow C$

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.


Statements	Reasons	——— Given: ∠1 ≅ ∠3; <mark>∠2</mark> ≅ <mark>∠4</mark>
		Prove: ABCD is a parallelogram
		$ \begin{array}{cccc} A & B \\ \hline 1 & 2 \end{array} $ $ \begin{array}{ccccc} D & C \end{array} $

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

Statements	Reasons	
		Given: AC and DB bisect each other at point P
		Prove: ABCD is a parallelogram
		<u>A</u> <u>B</u>
		D C

If one pair of opposite sides of a quadrilateral is both congruent and parallel, then the quadrilateral is a parallelogram.

Statements	Reasons	Given: $\overline{AB} \cong \overline{DC}$ and $\overline{AB} \parallel \overline{DC}$
		Prove: $ABCD$ is a parallelogram
		$A \longrightarrow B$ $D \longrightarrow C$

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If one pair of opposite sides of a quadrilateral is both congruent and parallel, then the quadrilateral is a parallelogram.