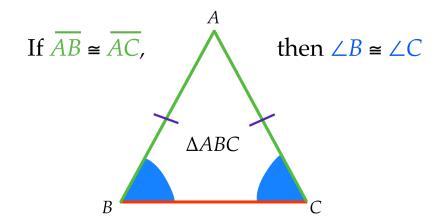
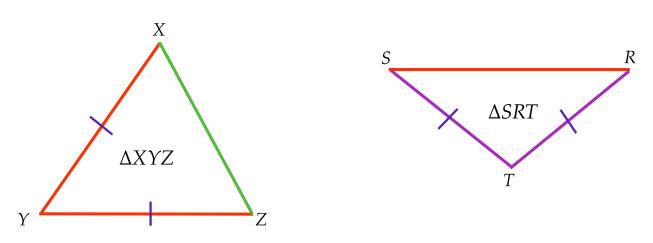

Isosceles Triangle

A triangle with two congruent sides, called legs, and two congruent angles, called base angles.

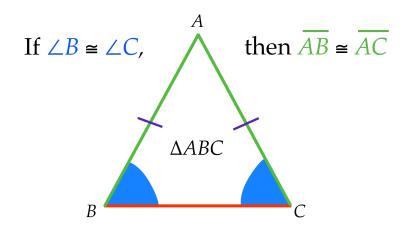

The legs are the two congruent sides

The base angles are the two congruent angles.

Isosceles Triangle Theorem

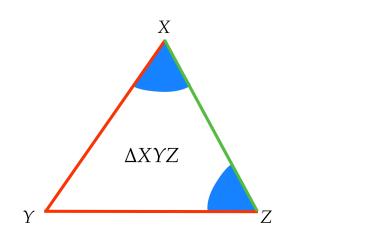

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

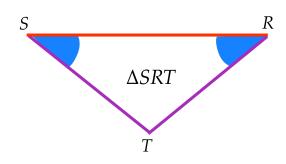
Statements	Reasons	
		Given: ΔABC
		$\overline{AB} \cong \overline{AC}$
		Prove: $\angle B \cong \angle C$
		B A C


Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Converse to Isosceles Triangle Theorem


If two angles of a triangle are congruent, then the sides opposite those angles are congruent.



Statements	Reasons	
		Given: ΔABC
		$\angle B \cong \angle C$
		Prove: $\overline{AB} \cong \overline{AC}$
		B A C

Converse to Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

If
$$\overline{XY} \cong \overline{YZ}$$
, then $\angle X \cong \angle Z$

Converse to Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

If
$$\angle X \cong \angle Z$$
, then $\overline{XY} \cong \overline{YZ}$