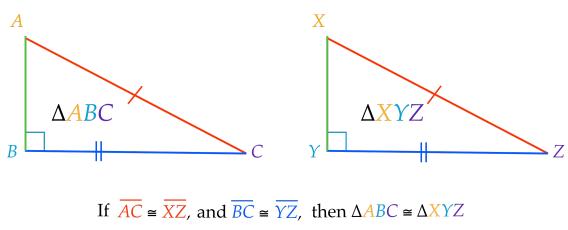

Two triangles are congruent if and only if their corresponding angles and sides are congruent.

The hypotenuse of a right triangle is the side opposite the right angle. The other two sides of a right triangle are called legs.

If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.


If $\overline{AC} \cong \overline{XZ}$, and $\overline{BC} \cong \overline{YZ}$, then $\Delta ABC \cong \Delta XYZ$

Only with Right Triangles - Hypotenuse - Leg (HL)

Statements	Reasons	Given: C is midpoint of \overline{BD}
		$\overline{AC} \perp \overline{BD}$
		$\overline{AB} \cong \overline{AD}$
		Prove: $\angle B \cong \angle D$
		$\stackrel{A}{ ext{$\wedge$}}$
		$B \longrightarrow C$

Statements	Reasons	— Given: $\overline{AC} \perp \overline{AD}$
		$\overline{AC} \perp \overline{BC}$
		X is the midpoint of AC
		X is the midpoint of BD
		Prove: $\Delta AXD \cong \Delta CXB$
		$D \xrightarrow{A} X$

If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

Only with Right Triangles - Hypotenuse - Leg (HL)