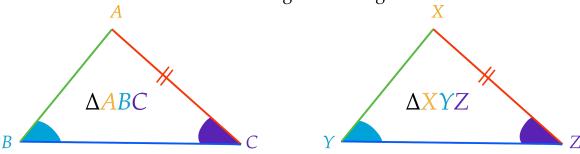
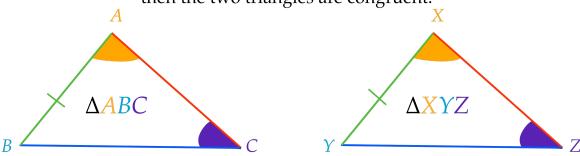

Two triangles are congruent if and only if their corresponding angles and sides are congruent.


Included Side - The side of the triangle that is common to two angles.

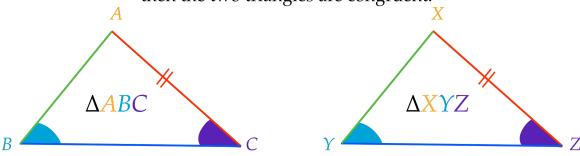
Non-included Side - The side of the triangle that is not common to two angles.



If two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of another triangle, then the two triangles are congruent.

If $\angle B \cong \angle Y$, $\angle C \cong \angle Z$, and $\overline{AC} \cong \overline{XZ}$, then $\Delta ABC \cong \Delta XYZ$

If two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of another triangle, then the two triangles are congruent.



If
$$\angle C \cong \angle Z$$
, $\angle A \cong \angle X$, and $\overline{AB} \cong \overline{XY}$, then $\triangle ABC \cong \triangle XYZ$
Angle - Angle - Non-included Side

Statements	Reasons	
		Given: $\angle A \cong \angle B$
		$\overline{BE} \cong \overline{AC}$
		Prove: $\overline{AD} \cong \overline{BD}$
		A E C

Reasons	Given: $\overline{AE} \parallel \overline{BC}$
	$\frac{AD}{AD} \cong \frac{BD}{BD}$
	$\angle A \cong \angle B$
	$\angle C$ is a right angle
	Prove: $\overline{AE} \cong \overline{BC}$
	A B C
	Reasons

If two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of another triangle, then the two triangles are congruent.

If $\angle B \cong \angle Y$, $\angle C \cong \angle Z$, and $\overline{AC} \cong \overline{XZ}$, then $\triangle ABC \cong \triangle XYZ$