### Geometric Proofs

The process of proving geometrical statements through geometric definitions, postulates and theorems.

Deductive Reasoning: Law of Syllogism if  $p \rightarrow q$  and  $q \rightarrow r$  are true conditionals, then  $p \rightarrow r$  is also true.

**Conditional Statement:** 

**Conditional Statement:** 

Law of Syllogism

If I study for two hours, then I will make an A.

If I make an A, then I will pass the class.

Deductive Reasoning: Law of Syllogism

if  $p \to q$  and  $q \to r$  are true conditionals, then  $p \to r$  is also true.

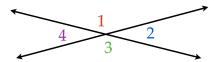
Given:  $\angle 1$  and  $\angle 3$  are vertical angles.

Prove:  $m \angle 1 = m \angle 3$ 

4 3 2

Vertical Angle Theorem
If two angles are vert. ∠s,
then the two ∠s are ≅.

Definition of  $\cong \angle s$ If the two  $\angle s$  are  $\cong$ , then their measures are equal.


Law of Syllogism

## Deductive Reasoning: Law of Syllogism

if  $p \rightarrow q$  and  $q \rightarrow r$  are true conditionals, then  $p \rightarrow r$  is also true.

Given:  $\angle 1$  and  $\angle 3$  are vertical angles.

Prove:  $m \angle 1 = m \angle 3$ 



### Statements

Reasons (definitions, theorems and postulates)

### Deductive Reasoning: Law of Syllogism

if  $p \rightarrow q$  and  $q \rightarrow r$  are true conditionals, then  $p \rightarrow r$  is also true.

Given: ∠1 and ∠2 form a linear pair

Prove: ∠1 and ∠2 are supplementary

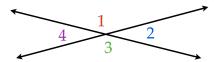
4 1 2

Linear Pair Postulate

If two angles form linear pair, then their measures add to equal 180°.

Definition of Supplementary ∠s

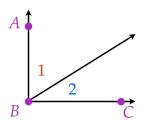
If the measure of two angles add to equal 180°, then the two angles are supplementary.


Law of Syllogism

# Deductive Reasoning: Law of Syllogism

if  $p \rightarrow q$  and  $q \rightarrow r$  are true conditionals, then  $p \rightarrow r$  is also true.

Given:  $\angle 1$  and  $\angle 2$  form a linear pair


Prove: ∠1 and ∠2 are supplementary



# Statements Reasons (definitions, theorems and postulates)

Given:  $\angle ABC$  is a right angle.

Prove:  $\angle 1$  and  $\angle 2$  are complementary.



| Statements | Reasons (definitions, theorems and postulates) |
|------------|------------------------------------------------|
|            |                                                |
|            |                                                |
|            |                                                |
|            |                                                |
|            |                                                |
|            |                                                |

| Given: $WY = XZ$                           | - V Z |
|--------------------------------------------|-------|
| Prove: $\overline{WX} \cong \overline{YZ}$ | X     |

| Statements Reas | ons (definitions, theorems and postulates) |
|-----------------|--------------------------------------------|
|                 |                                            |
|                 |                                            |
|                 |                                            |
|                 |                                            |
|                 |                                            |