Name	
Data	Dariod

Given a Conditional Statement $p \rightarrow q$

The Inverse can be expressed as $\sim p \rightarrow \sim q$

To create the Inverse negate the hypothesis, *p* and negate the conclusion, *q*.

Conditional Statement:

$$p \rightarrow q$$

if p, then q

Inverse:

$$\sim p \rightarrow \sim q$$

if not p, then not q

If $\angle 1$ and $\angle 2$ are complementary $\angle s$, then $m\angle 1 + m\angle 2 = 90^{\circ}$.

Given a Conditional Statement $p \rightarrow q$

The Inverse can be expressed as $\sim p \rightarrow \sim q$

To create the Inverse negate the hypothesis, *p* and negate the conclusion, *q*.

Conditional Statement:

$$p \rightarrow q$$

if p, then q

Inverse:

$$\sim p \rightarrow \sim q$$

if not p, then not q

If *B* is between *A* and *C*, then AB + BC = AC.

Given a Conditional Statement $p \rightarrow q$

The Inverse can be expressed as $\sim p \rightarrow \sim q$

To create the Inverse negate the hypothesis, *p* and negate the conclusion, *q*.

Conditional Statement:

$$p \rightarrow q$$

if p, then q

Inverse:

$$\sim p \rightarrow \sim q$$

if not p, then not q

If $\angle 1$ and $\angle 2$ are adjacent angles, then $\angle 1$ and $\angle 2$ have a common vertex.

Given a Conditional Statement $p \rightarrow q$

The Contrapositive can be expressed as $\sim q \rightarrow \sim p$

To create the Contrapositive negate the hypothesis, p and negate the conclusion, q. then switch to create $\sim q \rightarrow \sim p$.

Conditional Statement:

$$p \rightarrow q$$

if p, then q

Contrapositive:

$$\sim q \rightarrow \sim p$$

if not q, then not p

If $\angle 1$ and $\angle 2$ are adjacent angles, then $\angle 1$ and $\angle 2$ have a common vertex.

Given a Conditional Statement $p \rightarrow q$

The Contrapositive can be expressed as $\sim q \rightarrow \sim p$

To create the Contrapositive negate the hypothesis, p and negate the conclusion, q. then switch to create $\sim q \rightarrow \sim p$.

Conditional Statement:

$$p \rightarrow q$$

if p, then q

Contrapositive:

$$\sim q \rightarrow \sim p$$

if not q, then not p

If *B* is between *A* and *C*, then AB + BC = AC.

Given a Conditional Statement $p \rightarrow q$

The Contrapositive can be expressed as $\sim q \rightarrow \sim p$

To create the Contrapositive negate the hypothesis, p and negate the conclusion, q. then switch to create $\sim q \rightarrow \sim p$.

Conditional Statement:

$$p \rightarrow q$$

if p, then q

Contrapositive:

if not q, then not p

If $\angle 1$ and $\angle 2$ are supplementary $\angle s$, then $m\angle 1 + m\angle 2 = 180^{\circ}$.

Conditional Statement: $p \rightarrow q$

If $m \angle ABC = 37^{\circ}$, then $\angle ABC$ is an acute angle.

Converse: $q \rightarrow p$

Inverse: $\sim p \rightarrow \sim q$

Contrapositive: $\sim q \rightarrow \sim p$

Conditional Statement: $p \rightarrow q$

If $m\overline{AB} = m\overline{XY}$, then $\overline{AB} \cong \overline{XY}$.

Converse: $q \rightarrow p$

Inverse: $\sim p \rightarrow \sim q$

Contrapositive: $\sim q \rightarrow \sim p$