

Conditional Statement is a statement that can be written in the form “**if p , then q** ”

Notation for “**if p , then q** ” $p \rightarrow q$

Hypothesis: the portion following the “**if**” (p).

Conclusion: the portion following the “**then**” (q).

If a figure is a triangle, then the figure has three sides.

hypothesis, p : a figure is a triangle

conclusion, q : the figure has three sides

The **Converse** of $p \rightarrow q$, is $q \rightarrow p$

To create the **Converse** switch the p and q .

Conditional Statement; $p \rightarrow q$

If a figure is a triangle, then the figure has three sides.

hypothesis, p :

conclusion, q :

Converse; $q \rightarrow p$

The **Converse** of $p \rightarrow q$, is $q \rightarrow p$

To create the **Converse** switch the p and q .

Write the **Converse** of the following **Conditional Statements**

If $\angle 1$ and $\angle 2$ are adjacent angles, then $\angle 1$ and $\angle 2$ have a common vertex.

hypothesis, p :

conclusion, q :

Converse; $q \rightarrow p$

The **Converse** of $p \rightarrow q$, is $q \rightarrow p$

To create the **Converse** switch the p and q .

Write the **Converse** of the following **Conditional Statements**

If $\angle 2$ and $\angle 4$ are vertical angles, then $\angle 2 \cong \angle 4$.

hypothesis, p :

conclusion, q :

Converse; $q \rightarrow p$

The **Converse** of $p \rightarrow q$, is $q \rightarrow p$

To create the **Converse** switch the p and q .

Write the **Converse** of the following **Conditional Statements**

If $m\angle ABC = 135^\circ$, then $\angle ABC$ is an obtuse angle.

hypothesis, p :

conclusion, q :

Converse; $q \rightarrow p$

Determine if the **Converse** of the following **Conditional Statements** is True.

If not, give a counterexample.

If $m\angle ABC = 135^\circ$,
then $\angle ABC$ is an obtuse angle.

If $\angle ABC$ is an obtuse angle,
then $m\angle ABC = 135^\circ$

Determine if the **Converse** of the following **Conditional Statements** is True.
If not, give a counterexample.

If a figure is a triangle,
then the figure has three sides.

If a figure has three sides,
then the figure is a triangle

Determine if the **Converse** of the following **Conditional Statements** is True.
If not, give a counterexample.

If $\angle 2$ and $\angle 4$ are vertical angles,
then $\angle 2 \cong \angle 4$.

If $\angle 2 \cong \angle 4$,
then $\angle 2$ and $\angle 4$ are vertical angles.

Determine if the **Converse** of the following **Conditional Statements** is True.
If not, give a counterexample.

If $\angle 1$ and $\angle 2$ are adjacent angles,
then $\angle 1$ and $\angle 2$ have a common vertex.

If $\angle 1$ and $\angle 2$ have a common vertex,
then $\angle 1$ and $\angle 2$ are adjacent angles.

The **Converse** of $p \rightarrow q$, is $q \rightarrow p$

To create the **Converse** switch the p and q .

Conditional Statement; $p \rightarrow q$

If a figure is a triangle, then the figure has three sides.

hypothesis, p : a figure is a triangle

conclusion, q : the figure has three sides

Converse; $q \rightarrow p$

If the figure has three sides, then a figure is a triangle