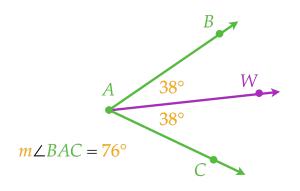
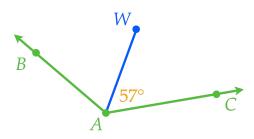


If $m \angle BAW = m \angle WAC$, then \overrightarrow{AW} is an angle bisector of $\angle BAC$

An angle bisector is any ray, line, or segment that divides an angle into two angles of equal measure.

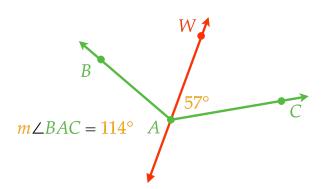


If $m \angle BAW = m \angle WAC$, then \overline{AW} is an angle bisector of $\angle BAC$

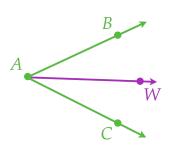


If $m \angle BAW = m \angle WAC$, then AW is an angle bisector of $\angle BAC$

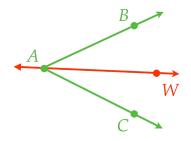
An angle bisector is any ray, line, or segment that divides an angle into two angles of equal measure.


Given \overrightarrow{AW} bisects $\angle BAC$, find $m \angle BAW$

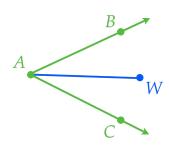
Given AW bisects $\angle BAC$, find $m \angle BAC$


 $m \angle BAW = m \angle WAC$

An angle bisector is any ray, line, or segment that divides an angle into two angles of equal measure.


Determine if \overrightarrow{AW} bisects $\angle BAC$

Ray


If $m \angle BAW = m \angle WAC$, then \overrightarrow{AW} is an angle bisector

Line

If $m \angle BAW = m \angle WAC$, then \overrightarrow{AW} is an angle bisector

Segment

If $\underline{m} \angle BAW = \underline{m} \angle WAC$, then \overline{AW} is an angle bisector