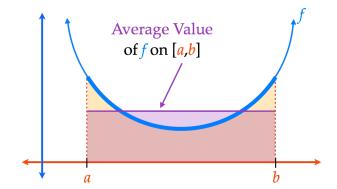

The Average Value of a Function

If f be integrable on [a,b], then

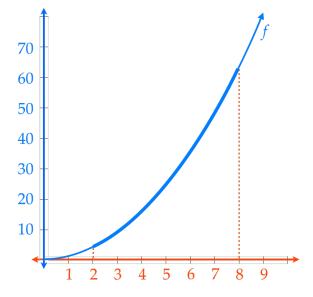
Average Value of
$$f$$
 on $[a,b]$ = $\frac{1}{b-a} \int_a^b f(x) dx$



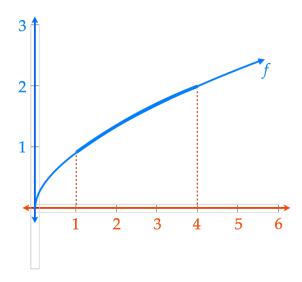
Area under f on [a,b] = Area under average value of f on [a,b]

The Average Value of a Function

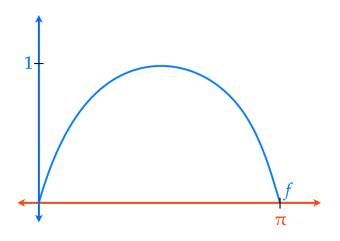
If f be integrable on [a,b], then


Average Value of
$$f$$
 on $[a,b]$ = $\frac{1}{b-a} \int_{a}^{b} f(x) dx$

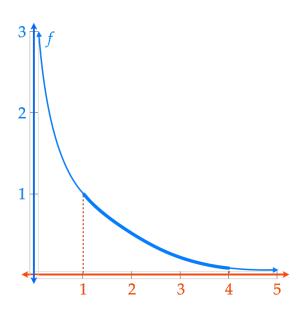
Area under f on [a,b] = Area under average value of f on [a,b]


Find the Average Value of the following

$$f(x) = x^2 \text{ on [2,8]}$$
 $\frac{1}{b-a} \int_a^b f(x) dx$

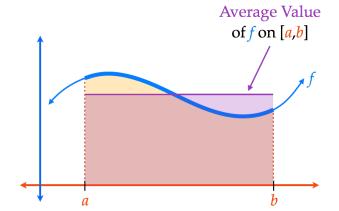

Find the Average Value of the following

$$f(x) = \sqrt{x}$$
 on [1,4]
$$\frac{1}{b-a} \int_a^b f(x) dx$$


Find the Average Value of the following

$$f(x) = \sin x$$
 on $[0,\pi]$
$$\frac{1}{b-a} \int_a^b f(x) dx$$

Find the Average Value of the following


$$f(x) = \frac{1}{x^2}$$
 on [1,4] $\frac{1}{b-a} \int_a^b f(x) dx$

The Average Value of a Function

If f be integrable on [a,b], then

Average Value of
$$f$$
 on $[a,b]$ = $\frac{1}{b-a} \int_{a}^{b} f(x) dx$

Area under f on [a,b] = Area under average value of f on [a,b]