lame _	
)ate	Period

Function Relationships

Position Function

Velocity Function

Acceleration Function

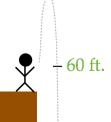
s(t) => take derivative s'(t) = V(t) => take derivative s''(t) = V'(t) = a(t)

Position Function

Velocity Function

Acceleration Function

S(t) <= find antiderivative V(t) <= find antiderivative


a(t)

A ball is thrown upward with an initial velocity of 40 feet per second from an initial height of 60 feet. Find the position function of the ball at time t.

Constant of acceleration due to gravity = -32 ft/sec²

A ball is thrown upward with an initial velocity of 40 feet per second from an initial height of 60 feet. Find the position function of the ball at time t.

60 ft.

Constant of acceleration due to gravity = -32 ft/sec²

$$a(t) = -32$$

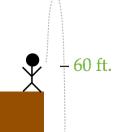
$$V(t) = -32t + 40$$

$$a(t) = -32$$
 $V(t) = -32t + 40$ $s(t) = -16t^2 + 40t + 60$

Find the height of the ball after 3 seconds.

A ball is thrown upward with an initial velocity of 40 feet per second from an initial height of 60 feet. Find the position function of the ball at time t.

Constant of acceleration due to gravity = -32 ft/sec²


$$a(t) = -32$$

$$V(t) = -32t + 40$$

$$a(t) = -32$$
 $V(t) = -32t + 40$ $s(t) = -16t^2 + 40t + 60$

When does the ball hit the ground?

A ball is thrown upward with an initial velocity of 40 feet per second from an initial height of 60 feet. Find the position function of the ball at time t.

Constant of acceleration due to gravity = -32 ft/sec²

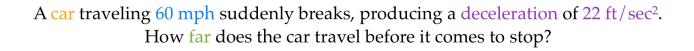
$$a(t) = -32$$

$$V(t) = -32t + 40$$

$$a(t) = -32$$
 $V(t) = -32t + 40$ $s(t) = -16t^2 + 40t + 60$

What is the velocity of the ball when it hits the ground?

A ball is thrown upward with an initial velocity of 40 feet per second from an initial height of 60 feet. Find the position function of the ball at time t.


Constant of acceleration due to gravity = -32 ft/sec²

$$a(t) = -32$$

$$V(t) = -32t + 40$$

$$a(t) = -32$$
 $V(t) = -32t + 40$ $s(t) = -16t^2 + 40t + 60$

How high does the ball go?

A car traveling 60 mph suddenly breaks, producing a deceleration of 22 ft/sec². How far does the car travel before it comes to stop?

Constant of deceleration = -22 ft/sec^2

