The Second Derivative Test

Let function f be a function such that f'(c) = 0 and the second derivative exists.

- 1. If f''(c) > 0, then f has a relative minimum at (c, f(c)).
- 2. If f''(c) < 0, then f has a relative maximum at (c, f(c)).

If f''(c) = 0, test fails. No Conclusion. Use the First Derivative Test.

Use the second derivative test to find extrema.

$$f(x) = x^3 - 3x + 2$$

Use the second derivative test to find extrema.

$$f(x) = -x^3 + 3x^2$$

Use the second derivative test to find extrema.

$$f(x) = x^4 - 2x^2 + 2$$

Use the second derivative test to find extrema.

$$f(x) = 3x^5 - 5x^3$$

The Second Derivative Test

Let function f be a function such that f'(c) = 0 and the second derivative exists.

- 1. If f''(c) > 0, then f has a relative minimum at (c, f(c)).
- 2. If f''(c) < 0, then f has a relative maximum at (c, f(c)).

If f''(c) = 0, test fails. No Conclusion. Use the First Derivative Test.