Given
$$f(x)$$
 Given $f(x) = x^4 + 4x^3 - 5x^2 + 6x - 8$

First Derivative Find
$$f'(x)$$

Second Derivative Find
$$f''(x)$$

Third Derivative Find
$$f'''(x)$$

Fourth Derivative Find
$$f''''(x)$$

*n*th Derivative

Given f(x) Notation for Higher Order Derivatives

First Derivative
$$f'(x)$$
 y' $\frac{dy}{dx}$ $\frac{d}{dx}[f(x)]$

Second Derivative
$$f''(x)$$
 y'' $\frac{d^2y}{dx^2}$ $\frac{d^2}{dx^2}[f(x)]$

Third Derivative
$$f'''(x)$$
 y''' $\frac{d^3y}{dx^3}$ $\frac{d^3}{dx^3}[f(x)]$

Fourth Derivative
$$f''''(x)$$
 y'''' $\frac{d^4y}{dx^4}$ $\frac{d^4}{dx^4}[f(x)]$

*n*th Derivative
$$f^{(n)}(x)$$
 $y^{(n)}$ $\frac{d^ny}{dx^n}$ $\frac{d^n}{dx^n}[f(x)]$

Given $f(x) = x^5 - x^3 + 2x^2 - 6$

Given $f(x) = x^3 + \sin x$

Find f'(x)

Find f'(x)

Find f''(x)

Find f''(x)

Find f'''(x)

Find f'''(x)

Find f''''(x)

Find f''''(x)

Given $f(x) = x^3 + x \cos x$

Find f'(x)

Find f''(x)

Find f'''(x)