An Alternative Form of the Derivative

The derivative of f(x) at c is...

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

The slope of the tangent line of f(x) at c.

In order for a limit to exist

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c}$$

Differentiability Implies Continuity If f(x) is differentiable at c, then f(x) is continuous at c.

Continuity Does Not Imply Differentiability

If f(x) is continuous at c, then f(x) may or may not be differentiable at c.

Continuity Does Not Imply Differentiability

If f(x) has a sharp turn at x = c, then f(x) is not differentiable at x = c.

Continuity Does Not Imply Differentiability

If f(x) has a sharp turn at x = c, then f(x) is not differentiable at x = c.

Continuity Does Not Imply Differentiability

If f(x) is continuous at c, then f(x) may or may not be differentiable at c.

Continuity Does Not Imply Differentiability

If f(x) has a vertical tangent line at x = c, then f(x) is not differentiable at x = c.

Continuity Does Not Imply Differentiability

If f(x) has a vertical tangent line at x = c, then f(x) is not differentiable at x = c.

Differentiable implies continuous

If f(x) is differentiable at x = c, then f(x) is continuous at x = c.

Continuous does not necessarily imply differentiable

Functions that have sharp turns at x = c or vertical tangent lines at x = c are not differentiable at x = c.