$$f(x) = \frac{4x^2}{x^2 + 1}$$

Find the limit of f(x) as x approaches ∞ and $-\infty$.

x approaches -∞							x approaches ∞			
x	-∞	-1,000	-100	-10	0	10	100	1,000	∞	
f(x)	4	3.999	3.999	3.96	0	3.96	3.999	3.999	4	
f(x) gets closer and closer to 4						f(x) gets closer and closer to 4				
$\lim_{x\to -\infty} f(x)$						$\lim_{x \to a}$	$\lim_{t\to\infty} f(s)$	<u>v</u>)		

$$f(x) = \frac{-x^2 + x + 3}{x^2 + 1}$$

Find the limit of f(x) as x approaches ∞ and $-\infty$.

x approaches -∞							<i>x</i> approaches ∞			
x	-∞	-1,000	-100	-10	0	10	100	1,000	∞	
f(x)	-1	-1.0001	-1.02	-1.06	3	-0.86	-0.98	-0.999	-1	
f(x) gets closer and closer to -1						f(x) gets closer and closer to -1				
$\lim_{x \to -\infty} f(x)$					$\lim_{x\to\infty}f(x)$					

$$f(x) = \frac{-x^2 + x + 3}{x^2 + 1}$$

$$y = -1$$

The line y = L is a horizontal asymptote if...

Given r is a positive rational number and c is any real number...

$$\lim_{x \to \infty} \frac{c}{x^r} = 0 \qquad \lim_{x \to -\infty} \frac{c}{x^r} = 0$$

$$\lim_{x \to \infty} \frac{6}{x} \qquad \lim_{x \to -\infty} \frac{32}{x^2}$$

Find the following limits

$$\lim_{x\to\infty}\frac{3x+2}{x-5}$$

Find the following limits

$$\lim_{x\to\infty}\frac{2x-5}{3x^2+7}$$

Find the following limits

$$\lim_{x \to \infty} \frac{-2x^4 + x^2}{5x^3 - 1}$$

Find the following limits

$$\lim_{x \to -\infty} \frac{2x^2 - x}{4x^2 - 9}$$