Date ______ Period _____

$$\lim_{x\to 1^-} f(x)$$

$$\lim_{x\to 1^+} f(x)$$

As $x \to 1$ from the left, f(x) decreases without bound

As $x \to 1$ from the right, f(x) increases without bound

The "=" does not mean the limit exits, rather it tells how the limit fails to exist by denoting the "unbound behavior"

Limits must equal a constant number.

 $\lim_{x\to 1^-} f(x)$

 $\lim_{x\to 1^+} f(x)$

As $x \to 1$ from the left, f(x) increases without bound

As $x \to 1$ from the right, f(x) increases without bound

How to find Vertical Asymptotes

Given
$$f(x) = \frac{g(x)}{h(x)}$$
 if $\frac{g(c) \neq 0}{h(c) = 0}$, then $f(x)$ has a vertical asymptote at $x = c$.

Determine the following vertical asymptotes of the following functions

$$f(x) = \frac{3x}{5(x-4)}$$

How to find Vertical Asymptotes

Given
$$f(x) = \frac{g(x)}{h(x)}$$
 if $\frac{g(c) \neq 0}{h(c) = 0}$, then $f(x)$ has a vertical asymptote at $x = c$.

Determine the following vertical asymptotes of the following functions

$$f(x) = \frac{x^2}{x^2 - 9}$$

How to find Vertical Asymptotes

Given
$$f(x) = \frac{g(x)}{h(x)}$$
 if $\frac{g(c) \neq 0}{h(c) = 0}$, then $f(x)$ has a vertical asymptote at $x = c$.

Determine the following vertical asymptotes of the following functions

$$f(x) = \frac{x^2 - x - 6}{x^2 + 6x + 8}$$

$$f(x) = \frac{x^2 + 2x}{x + 1}$$

$$\lim_{x \to 4} \frac{3x}{5(x-4)} = \frac{12}{0}$$

$$\lim_{x \to 3} \frac{x^2}{x^2 - 9}$$

$$\lim_{x \to -4} \frac{x^2 - x - 6}{x^2 + 6x + 8}$$