Properties of Continuity

If *b* is a real number and f(x) and g(x) are continuous at x = c, then the following functions are also continuous at x = c...

$$f(x) = 2x + 4$$
 $g(x) = x + 8$ $x = 5$

Scalar Multiple Rule:

Example:

$$b \cdot f(x)$$
 is continuous at $x = c$

Let
$$b = 3$$
, then $b \cdot f(x) = 3(2x + 4)$
= $6x + 12$

is continuous at x = 5

Properties of Continuity

If *b* is a real number and f(x) and g(x) are continuous at x = c, then the following functions are also continuous at x = c...

$$f(x) = 2x + 4$$
 $g(x) = x + 8$ $x = 5$

Sum and Difference Rule:

Example:

$$f(x) \pm g(x)$$
 continuous at $x = c$

$$f(x) + g(x) = 2x + 4 + x + 8$$
$$= 3x + 12$$

is continuous at x = 5

Properties of Continuity

If *b* is a real number and f(x) and g(x) are continuous at x = c, then the following functions are also continuous at x = c...

$$f(x) = 2x + 4$$
 $g(x) = x + 8$ $x = 5$

Sum and Difference Rule:

Example:

$$f(x) \pm g(x)$$
 continuous at $x = c$
$$f(x) - g(x) = 2x + 4 - (x + 8)$$

$$f(x) - g(x) = 2x + 4 - (x + 8)$$

$$= x - 4$$

is continuous at x = 5

Properties of Continuity

If *b* is a real number and f(x) and g(x) are continuous at x = c, then the following functions are also continuous at x = c...

$$f(x) = 2x + 4$$
 $g(x) = x + 8$ $x = 5$

Product Rule:

Example:

$$f(x) \cdot g(x)$$
 continuous at $x = c$

$$f(x) \cdot g(x) = (2x + 4)(x + 8)$$
$$= 2x^2 + 20x + 32$$

is continuous at x = 5

Properties of Continuity

If *b* is a real number and f(x) and g(x) are continuous at x = c, then the following functions are also continuous at x = c...

$$f(x) = 2x + 4$$
 $g(x) = x + 8$ $x = 5$

Quotient Rule: Example:

$$\frac{f(x)}{g(x)} \quad , \ g(c) \neq 0 \qquad \qquad \frac{f(x)}{g(x)} = \frac{2x+4}{x+8}$$

is continuous at x = 5

Correlation Between a Functions Domain and Its Continuity
The following functions are continuous at every point in its domain.

Polynomial Functions
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Rational Functions
$$r(x) = \frac{p(x)}{q(x)}$$
, $q(x) \neq 0$

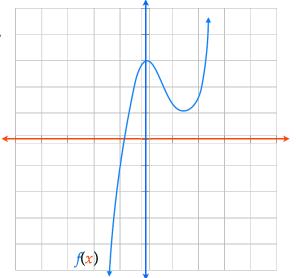
Radical Functions
$$f(x) = \sqrt[n]{x}$$

Trigonometric Functions:
$$\sin x$$
, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$,

Exponential/Logarithmic Functions:
$$g(x) = \log x$$
; $h(x) = b^x$

Define the Interval where f(x) is continuous

$$f(x) = x^3 - 3x^2 + x + 3$$


Polynomial Function

Find the Domain

(-∞,∞)

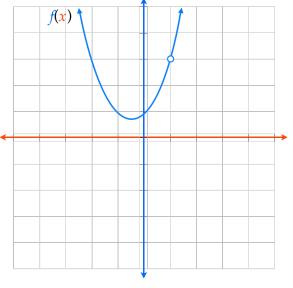
Continuous across the Domain

 $(-\infty,\infty)$

Define the Interval where f(x) is continuous

$$f(x) = \frac{x^3 - 1}{x - 1}$$

Rational Function

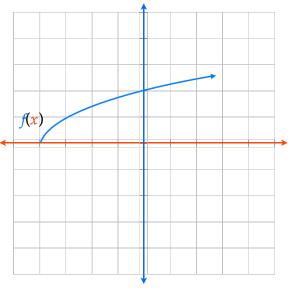

Find the Domain $x - 1 \neq 0$

$$(-\infty,1) \cup (1,\infty)$$

 $x \neq 1$

Continuous across the Domain

$$(-\infty,1)$$
 $(1,\infty)$


Define the Interval where f(x) is continuous

$$f(x) = \sqrt{x+4}$$

Radical Function

Find the Domain
$$x + 4 \ge 0$$

[-4,\infty] $x \ge -4$

Continuous across the Domain $[-4,\infty)$

