

Event X and Event Y are considered mutually exclusive events if they are disjoint events so that $X \cap Y = \emptyset$

If X and Y are mutually exclusive ($X \cap Y = \emptyset$) then...

$$P(X \cup Y) =$$

If X and Y are not mutually exclusive ($X \cap Y \neq \emptyset$) then...

$$P(X \cup Y) =$$

X and Y

Mutually Exclusive ($X \cap Y = \emptyset$)

$$P(X \cup Y) = P(X) + P(Y)$$

X and Y

Not Mutually Exclusive ($X \cap Y \neq \emptyset$)

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

Let $S = \{a, b, c, d, e, f, g, h\}$ and event $X = \{a, b, h\}$ and $Y = \{g, h\}$ and $Z = \{a, b, c, d, e, f\}$

$$P(X \cup Y) =$$

X and Y

Mutually Exclusive ($X \cap Y = \emptyset$)

$$P(X \cup Y) = P(X) + P(Y)$$

X and Y

Not Mutually Exclusive ($X \cap Y \neq \emptyset$)

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

Let $S = \{a, b, c, d, e, f, g, h\}$ and event $X = \{a, b, h\}$ and $Y = \{g, h\}$ and $Z = \{a, b, c, d, e, f\}$

$$P(X \cup Z) =$$

X and Y

Mutually Exclusive ($X \cap Y = \emptyset$)

$$P(X \cup Y) = P(X) + P(Y)$$

X and Y

Not Mutually Exclusive ($X \cap Y \neq \emptyset$)

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

Let $S = \{a, b, c, d, e, f, g, h\}$ and event $X = \{a, b, h\}$ and $Y = \{g, h\}$ and $Z = \{a, b, c, d, e, f\}$

$$P(Y \cup Z) =$$

Event X and Event Y are considered mutually exclusive events if they are disjoint events so that $X \cap Y = \emptyset$

If X and Y are mutually exclusive ($X \cap Y = \emptyset$) then...

$$P(X \cup Y) = P(X) + P(Y)$$

If X and Y are not mutually exclusive ($X \cap Y \neq \emptyset$) then...

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$