| www.iTutoring.com - NOTES       |      |
|---------------------------------|------|
| Permutations with Distinct Obje | ects |

| Name |        |
|------|--------|
| Date | Period |

an arrangement of r objects out of n total distinct objects. Two situations....

Distinct objects can be repeated Distinct objects can not be repeated

# Permutation

an arrangement of r objects out of n total distinct objects. Two situations....

How many two digit codes can be created if both symbols are lowercase letters and can be repeated?

an arrangement of r objects out of n total distinct objects.

Two situations....

Distinct objects can be repeated

Distinct objects can not be repeated

A standard combination lock has 40 distinct tic marks (0-39), each representing a numerical value. If a lock's combination consists of three distinct numerical values and allows for repetition, how many different combinations can be created?



## Permutation

an arrangement of r objects out of n total distinct objects.

Two situations....

Distinct objects can be repeated

Distinct objects can not be repeated

arrangements =  $n^r$ 

$$\frac{a-z}{26 \text{ options}} \times \frac{a-z}{26 \text{ options}}$$
0-39 0-39 0-39
40 options × 40 options × 40 options

an arrangement of r objects out of n total distinct objects.

Two situations....

Distinct objects can be repeated arrangements =  $n^r$ 

How many three digit codes can be created if all three symbols are lowercase letters and <u>can not</u> be repeated?

### Permutation

an arrangement of r objects out of n total distinct objects.

Two situations....

Distinct objects can be repeated arrangements =  $n^r$  Distinct objects can not be repeated

The number of arrangements of n objects using r of those objects where

- 1. The n objects are distinct/different objects,
- 2. Objects can not be replaced or used more than once,
- 3. The order of the objects is important,

$$P(n,r) = \frac{n!}{(n-r)!}$$

an arrangement of *r* objects out of *n* total distinct objects.

Two situations....

Distinct objects can be repeated arrangements =  $n^r$ 

How many different ways can you arrange three of the letters in TEXAS?

## Permutation

an arrangement of r objects out of n total distinct objects.

Two situations....

Distinct objects can be repeated

Distinct objects can not be repeated

arrangements = 
$$n^r$$

$$P(n,r)=\frac{n!}{(n-r)!}$$