set
$$A = \{a, b, c, d, e\}$$
 set $B = \{1, 2, 3\}$

if set
$$C = \{A, B, C, D, E, F, G_i\}$$

The empty set, \emptyset , has no elements...

The set of integer values, Z..

We can count the number of elements in each set.

If a Set has n elements, then that Set has 2^n subsets.

set
$$A = \{a, b, c, d, e\}$$
 set $B = \{1, 2, 3\}$

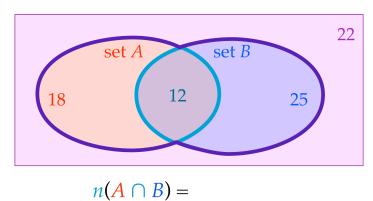
set
$$C = \{A, B, C, D, E, F, G,\}$$

If a Set has n elements, then that Set has 2^n subsets.

set $S = \{a, b, c, d\}$ Find the subsets of set S set S has S has S has S subsets or S subsets

0 elements

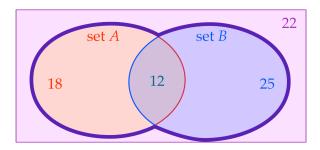
1 element


2 elements

3 elements

4 elements

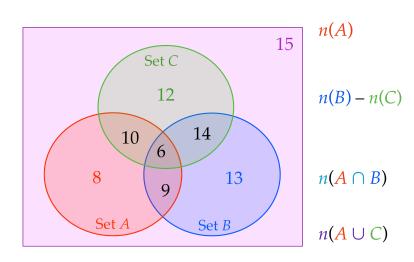
set S has 16 Total Subsets


$$n(U) = 18 + 12 + 25 + 22 = 77$$

 $n(A) = 18 + 12 = 30$ $n(B) = 25 + 12 = 37$

$$n(A \cup B) =$$

If a Set *A* and Set *B* are finite sets...


$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

If a Set *A* and Set *B* have no elements in common...

$$n(A \cup B) = n(A) + n(B)$$

