A set is a collection of distinct objects.

$$set A = \{2, 4, 6, 8\}$$
 set $B = \{3, 6, 9, 12, 15\}$ set $C = \{7, 9, 11\}$

The "distinct objects" of a set are called elements.

A set is a collection of distinct objects.

$$set A = \{2, 4, 6, 8\}$$
 set $B = \{3, 6, 9, 12, 15\}$ set $C = \{7, 9, 11\}$ set $A \cap set B$ set $B \cap set C$

$$\operatorname{set} A \cap \operatorname{set} C$$

If a set has no elements, it is called the empty set and denoted as \emptyset .

The Intersection of two sets is the set containing the common elements of the two sets and is denoted by a " \cap " sign.

A set is a collection of distinct objects.

$$set A = \{2, 4, 6, 8\}$$
 set $B = \{3, 6, 9, 12, 15\}$ set $C = \{7, 9, 11\}$ set $A \cup set B$ set $A \cup set B$

 $\operatorname{set} A \cup \operatorname{set} C$

The Union of two sets is the set containing the elements that are in either set or both sets and is denoted by a " \cup " sign.

A set is a collection of distinct objects.

$$set A = \{a, b, c\}$$
 $set B = \{a, b\}$ $set C = \{a, b, c\}$

Two sets are equal if they have all the same elements.

A set is a collection of distinct objects.

$$set A = \{a, b, c\}$$

set
$$B = \{a, b\}$$

$$set A = \{a, b, c\}$$
 $set B = \{a, b\}$ $set C = \{a, b, c\}$

Set *B* is a proper subset of Set *A* if every element in *B* is also and element of *A* and $B \neq A$. Set *C* is a subset of Set *A* if every element in *C* is also and element of *A*.

A set is a collection of distinct objects.

$$set A = \{a, b, c\}$$
 $set B = \{a, b\}$ $set C = \{a, b, c\}$

set
$$B = \{a, b\}$$

$$set C = \{a, b, c\}$$

Find all the subsets of set *A*

0 elements 1 element 2 elements 3 elements

Set *B* is a proper subset of Set *A* if every element in *B* is also and element of *A* and $B \neq A$. Set *C* is a subset of Set *A* if every element in *C* is also and element of *A*.