A geometric sequence is a sequence of successive terms that differ by a common ratio, *r*.

$$a_1 = a$$
, $a_n = r \cdot a_{n-1}$

$$a_1 = 2$$
, $a_n = 3 \cdot a_{n-1}$

common ratio = 3

A geometric sequence is a sequence of successive terms that differ by a common ratio, r.

$$a_1 = a$$
, $a_n = r \cdot a_{n-1}$

$$a_1 = 8$$
, $a_n = -\frac{1}{2} \cdot a_{n-1}$

8, -4, 2, -1,
$$\frac{1}{2}$$
, $-\frac{1}{4}$
×- $\frac{1}{2}$ ×- $\frac{1}{2}$ ×- $\frac{1}{2}$ ×- $\frac{1}{2}$ ×- $\frac{1}{2}$

common ratio = $-\frac{1}{2}$

Determine if the following sequence is a geometric sequence.

$$\{a_n\} = \{2^n\}$$

Find the first five terms of $\{a_n\}$

Find a_n Find a_{n+1}

Determine if the following sequence is a geometric sequence.

$${a_n} = {3^{2n}}$$

Find the first five terms of $\{a_n\}$

Find a_n Find a_{n+1}

The general formula of a geometric sequence

$$a_n = a_1 \cdot r^{n-1}$$

Find the general formula of the following geometric sequences