Date Period

Logarithmic Equations

an equation that can be written in the form...

$$\log_b x = y$$

Let *b* and *x* be positive numbers, and $b \ne 1$. The logarithm base *b* of *x* is defined as follows:

$$\log_b x = y$$
 if and only if $x = b^y$

Changing from Logarithmic Form to Exponential Form

$$\log_b x = y \longrightarrow x = b^y$$
Logarithmic Form Exponential Form

$$\log_b x = y$$

Changing from Logarithmic Form to Exponential Form

$$\log_b x = y \longrightarrow x = b^y$$
Logarithmic Form Exponential Form

Write the following logarithmic equations in exponential form.

$$\log_2 8 = 3$$
 $\log_3 81 = 4$ $\log_2 2 = 1$ $\log_{\frac{1}{2}} 8 = -3$

Changing from Exponential Form to Logarithmic Form

$$x = b^y \longrightarrow \log_b x = y$$
Exponential Form Logarithmic Form

$$\log x = b^y$$

Changing from Exponential Form to Logarithmic Form

$$x = b^y$$
 $\longrightarrow \log_b x = y$ Exponential Form Logarithmic Form

Write the following exponential equations in logarithmic form.

$$9 = 3^2$$
 $64 = 2^6$ $1 = 5^0$ $16 = (\frac{1}{4})^{-2}$

Logarithmic Form

Exponential Form

$$\log_b x = y$$

if and only if

$$x = b^y$$

$$x = b^y$$

$$\log_b x = y$$