The number e is an irrational number that often occurs with exponential and logarithmic functions.

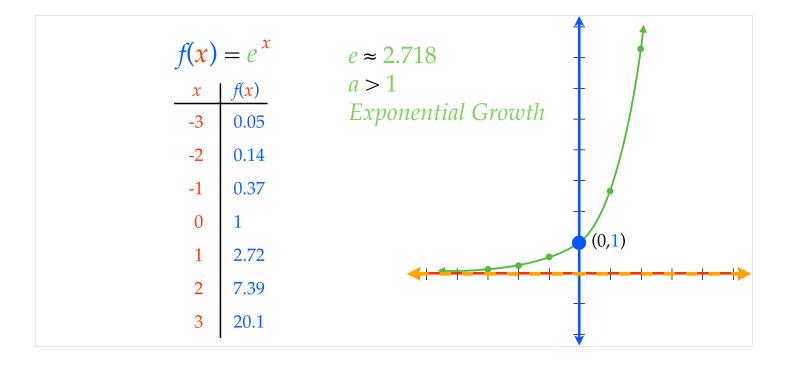
Just as π is an irrational number that often occurs in applications with circles.

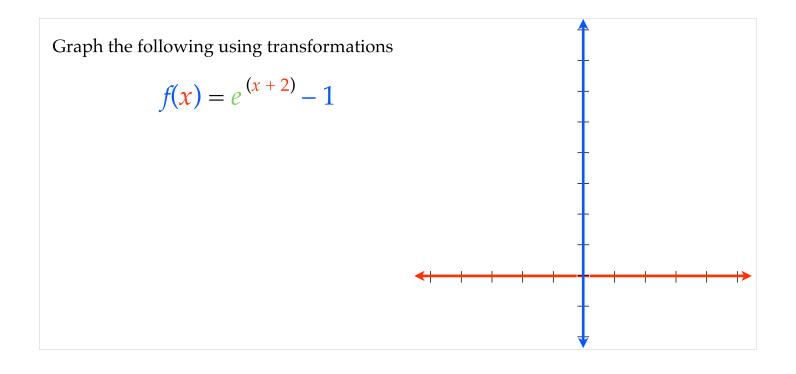
$$A = \pi r^2 \qquad C = 2\pi r$$

$$\pi \approx 3.14$$

The number e is an irrational number that often occurs with exponential and logarithmic functions.

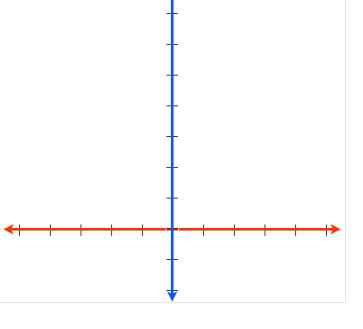
The number e is defined as


$$\left(1+\frac{1}{n}\right)^n$$


as
$$n \to \infty$$

11	<u>1</u>	$1+\frac{1}{n}$	$\left(1+\frac{1}{n}\right)^n$
1	1	2	2
10	0.1	1.1	2.59374246
100	0.01	1.01	2.704813829
1,000	0.001	1.001	2.716923932
10,000	0.0001	1.0001	2.718145927
100,000	0.00001	1.00001	2.718268237
1,000,000	0.000001	1.000001	2.718280469
1,000,000,000	10-9	1 + 10-9	2.718281827

The number e is an irrational number that often occurs with exponential and logarithmic functions.


$$e \approx 2.718281827$$
 $e \approx 2.718$

Graph the following using transformations

$$f(x) = e^{-x} + 2$$

