Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

The domain of $f \bullet g$ is the set of all numbers x in the domain of function g such that g(x) is in the domain of function f.

$$f(x) = \frac{4}{x-4}$$
 $g(x) = 2x + 2$

Find the domain of $f \bullet g$.

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

The domain of $f \bullet g$ is the set of all numbers x in the domain of function g such that g(x) is in the domain of function f.

$$f(x) = \frac{4}{x-4}$$
 $g(x) = 2x + 2$

Find the domain of $g \bullet f$.

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

The domain of $f \bullet g$ is the set of all numbers x in the domain of function g such that g(x) is in the domain of function f.

$$f(x) = \frac{4}{x-4}$$
 $g(x) = 2x + 2$

Find the domain of $f \bullet f$.

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

The domain of $f \bullet g$ is the set of all numbers x in the domain of function g such that g(x) is in the domain of function f.

$$f(x) = \sqrt{x+2} \qquad g(x) = \frac{2}{x-3}$$

Find the domain of $f \bullet g$.

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

The domain of $f \bullet g$ is the set of all numbers x in the domain of function g such that g(x) is in the domain of function f.

$$f(x) = \sqrt{x+2} \qquad g(x) = \frac{2}{x-3}$$

Find the domain of $g \bullet f$.