Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

Let f(x) = 2x + 5, and $g(x) = x^2 + 2$, find the following values.

$$(f \bullet g)(1)$$

$$(f \bullet g)(-2)$$

$$(g \bullet f)(5)$$

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

Let f(x) = 2x + 5, and $g(x) = x^2 + 2$, find the following values.

$$(f \bullet g)(x)$$

$$(g \bullet f)(x)$$

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

If $f \bullet g = h$, and $h(x) = x^4 - 1$, find the components f(x) and g(x).

Given two functions, f(x) and g(x), the composite function, written $f \bullet g$, is defined as

$$(f \bullet g)(x) = f(g(x))$$

If $f \bullet g = h$, and $h(x) = (x^4 - 4)^{10}$, find the components f(x) and g(x).