Even and Odd Functions

Even and *odd* are terms applied to functions to describe the symmetry that exists of the graph of the function.

Even Functions

Odd Functions

Symmetric with respect to *y*-axis

Symmetric with respect to *origin*

Even Functions

$$f(-x)=f(x)$$

y-axis

Odd Functions

$$f(-x) = -f(x)$$

origin

Determine if the following functions are Even, Odd, or Neither

$$f(x) = x^2 - 9$$

$$f(x) = 4x^3 - x$$

$$f(x) = 2x + 10$$

$$f(-x) = f(x)$$

y-axis

Odd Functions

$$f(-x) = -f(x)$$
origin

Determine if the following functions are Even, Odd, or Neither

$$f(x) = |x| + x$$

$$f(x) = 2x^4 - 4x^2$$

$$f(x) = x - x^3$$

Even and Odd Functions

Even and *odd* are terms applied to functions to describe the symmetry that exists of the graph of the function.

Even Functions

For every point (x,y) on f(x), there is a corresponding point (-x,y)

$$f(-x) = f(x)$$

Symmetric with respect to *y*-axis

Odd Functions

For every point (x,y) on f(x), there is a corresponding point (-x,-y)

$$f(-x) = -f(x)$$

Symmetric with respect to *origin*