Just like numbers, functions can be added, subtracted, multiplied, and divided.

$$f(x) = 5x + 6$$

$$g(x) = x^2 + 2x - 15$$

The sum f + g

(f+g)(x)

The product $f \cdot g$

 $(f \cdot g)(x)$

The difference f - g

(f-g)(x)

The quotient $\frac{f}{g}$

 $\left(\frac{f}{g}\right)(x)$

Just like numbers, functions can be added, subtracted, multiplied, and divided.

$$f(x) = 5x + 6$$

$$g(x) = x^2 + 2x - 15$$

The sum f + g

$$(f+g)(x)$$

Just like numbers, functions can be added, subtracted, multiplied, and divided.

$$f(x) = 5x + 6$$
$$g(x) = x^2 + 2x - 15$$

The difference
$$f - g$$

 $(f - g)(x)$

Just like numbers, functions can be added, subtracted, multiplied, and divided.

$$f(x) = 5x + 6$$
$$g(x) = x^2 + 2x - 15$$

The product
$$f \cdot g$$

 $(f \cdot g)(x)$

Just like numbers, functions can be added, subtracted, multiplied, and divided.

$$f(x) = 5x + 6$$
$$g(x) = x^2 + 2x - 15$$

The quotient $\frac{f}{g}$

$$\left(\frac{f}{g}\right)(x)$$

Just like numbers, functions can be added, subtracted, multiplied, and divided.

$$f(x) = 5x + 6$$
$$g(x) = x^2 + 2x - 15$$

The sum
$$f + g$$

$$(f+g)(x)=f(x)+g(x)$$

The difference
$$f - g$$

$$(f-g)(x) = f(x) - g(x)$$

The product $f \cdot g$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

The quotient $\frac{f}{g}$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 $g(x) \neq 0$