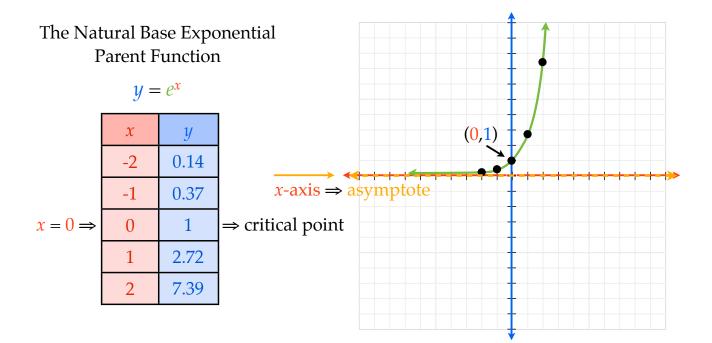
The number e is an irrational number that often occurs with exponential and logarithmic functions.

The number e is defined as

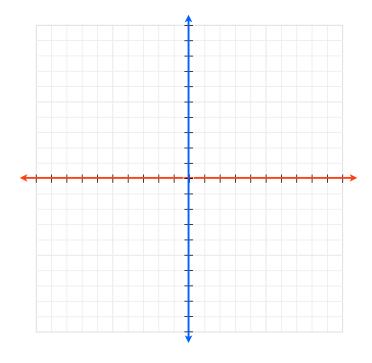
$$e = \left(1 + \frac{1}{n}\right)^n \approx 2.718$$

$$as n \to \infty$$



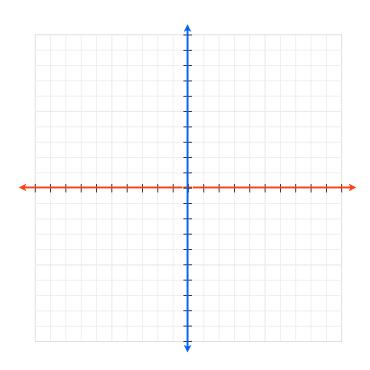
Graph the following exponential equation

$$y = e^{(x-2)} - 5$$



Graph the following exponential equation

$$y = e^{(x+1)} + 3$$

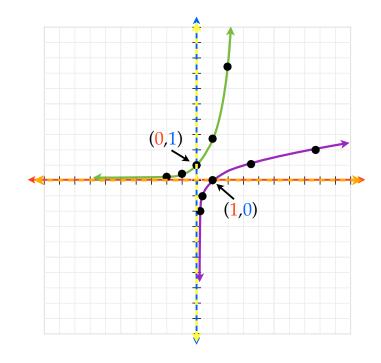


$$y = e^x$$

X	y
-2	0.14
-1	0.37
0	1
1	2.72
2	7.39

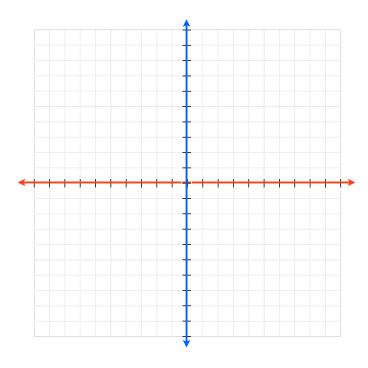
$$y = \log_e x$$
$$y = \ln x$$

\boldsymbol{x}	y
0.14	-2
0.37	-1
1	0
2.72	1
7.39	2



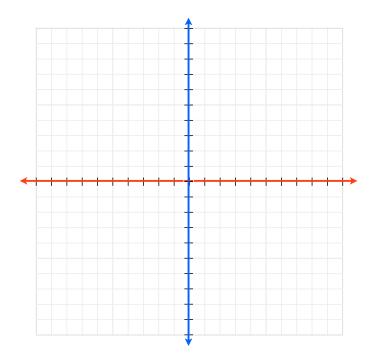
Graph the following logarithmic equation

$$y = \ln (x - 2) - 5$$



Graph the following logarithmic equation

$$y = \ln(x + 5) + 2$$



Properties of the Natural Base, e

$$ln e = 1$$

$$\ln \rho x - y$$

$$\ln e^x = x \qquad e^{\ln x} = x$$

Simplify the following

$$\ln e^{(x+2)}$$

$$e^{\ln 2x}$$

$$\ln e^{3a}$$

$$e^{4 \cdot \ln x}$$

Solving equation with the Natural Log

$$\ln x = \log_{\ell} x$$

 $\ln 3x = 1$ $\ln 5 + \ln x = 4$ $2\ln 3 + \ln x = \ln 27$ $\ln x + \ln x = 2$