if n (index) is odd, then t has one real n^{th} root. if n (index) is even and t (radicand) > 0, then t has two real n^{th} roots. if n (index) is even and t (radicand) < 0, then t has no real n^{th} roots. if t (radicand) = 0, then t has one real n^{th} root.

Solve the following equations

$$5x^3 = -40$$

$$x^4 - 25 = 600$$

$$(x-3)^3 - 18 = 46$$

Solve the following equations

$$(x+4)^4 + 8 = 24$$
 $(x-3)^3 + 2 = -25$ $(x+1)^4 + 6 = 5$

if n (index) is odd, then t has one real n^{th} root. if n (index) is even and t (radicand) > 0, then t has two real n^{th} roots. if n (index) is even and t (radicand) < 0, then t has no real n^{th} roots. if t (radicand) = 0, then t has one real n^{th} root.