n^{th} Root s is the n^{th} root of t if $s^n = t$

Is 2 the 3rd root of 8?

$$2^3 = 8$$
$$2 \cdot 2 \cdot 2 = 8 \checkmark$$


Is 5 the 4th root of 625?

$$5^4 = 625$$
$$5 \cdot 5 \cdot 5 \cdot 5 = 625 \checkmark$$

Is 3 the 2nd root of 9?

$$3^2 = 9$$
$$3 \cdot 3 = 9 \checkmark$$

The 3rd root of 8 is 2

The 4th root of 625 is 5

The square root of 9 is 3?

index
$$\sqrt{9} = 3$$

if n (index) is odd, then t has one real n^{th} root. if n (index) is even and t (radicand) > 0, then t has two real n^{th} roots. if n (index) is even and t (radicand) < 0, then t has no real n^{th} roots. if t (radicand) = 0, then t has one real n^{th} root.

$$\sqrt[4]{81}$$

if n (index) is odd, then t has one real n^{th} root. if n (index) is even and t (radicand) > 0, then t has two real n^{th} roots. if n (index) is even and t (radicand) < 0, then t has no real n^{th} roots. if t (radicand) = 0, then t has one real n^{th} root.

⁵√32

 $\sqrt[4]{-16}$

if n (index) is odd, then t has one real n^{th} root. if n (index) is even and t (radicand) > 0, then t has two real n^{th} roots. if n (index) is even and t (radicand) < 0, then t has no real n^{th} roots. if t (radicand) = 0, then t has one real n^{th} root.

⁴√625

 $\sqrt[5]{0}$

Popular Positive *n*th Roots

3rd roots

x	χ^3	$\sqrt[3]{x^3} = x$
1	1	$\sqrt[3]{1}=1$
2	8	$\sqrt[3]{8} = 2$
3	27	$\sqrt[3]{27} = 3$
4	64	$\sqrt[3]{64} = 4$
5	125	$\sqrt[3]{125} = 5$
6	216	$\sqrt[3]{216} = 6$

4th roots

x	<i>x</i> ⁴	$\sqrt[4]{x^4} = x$
1	1	$\sqrt[4]{1}=1$
2	16	$\sqrt[4]{16} = 2$
3	81	$\sqrt[4]{81} = 3$
4	256	$\sqrt[4]{256} = 4$
5	625	$\sqrt[4]{625} = 5$

5th roots

х	<i>x</i> ⁵	$\sqrt[5]{x^5} = x$
1	1	$\sqrt[5]{1} = 1$
2	32	$\sqrt[5]{32} = 2$
3	273	$\sqrt[5]{273} = 3$