To find the determinant of a 3×3 matrix, find the sum of the products of the red diagonals, then subtract the sum of the products of the blue diagonals.

Given a system of three equations,

$$ax + by + cz = s$$

$$dx + ey + fz = r$$

$$gx + hy + iz = t$$

We can create a coefficient matrix from the coefficients of the variables.

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = D$$

Given a system of three equations,

$$ax + by + cz = s$$

$$dx + ey + fz = r$$

has solutions,

$$gx + hy + iz = t$$

$$x = \frac{\begin{vmatrix} s & b & c \\ r & e & f \\ t & h & i \end{vmatrix}}{D} \qquad y = \frac{\begin{vmatrix} a & s & c \\ d & r & f \\ g & t & i \end{vmatrix}}{D} \qquad z = \frac{\begin{vmatrix} a & b & s \\ d & e & r \\ g & h & t \end{vmatrix}}{D}$$

$$y = \frac{\begin{vmatrix} a & s & c \\ d & r & f \\ g & t & i \end{vmatrix}}{D}$$

$$z = \begin{array}{c|cc} a & b & s \\ d & e & r \\ \hline g & h & t \\ \hline D \end{array}$$

D = determinant of the coefficient matrix This is knows as Cramer's Rule

Steps to use Cramer's Rule

1. Put System of Equations in Form...

$$ax + by + cz = s$$

$$dx + ey + fz = r$$

$$gx + hy + iz = t$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = D$$

3. Find Determinant of Coefficient Matrix

$$Set = D$$

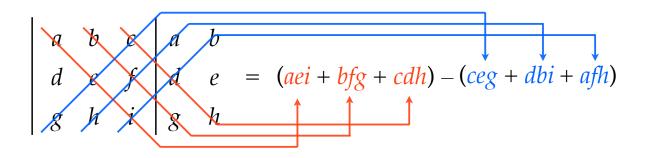
$$x = \frac{\begin{vmatrix} s & b & c \\ r & e & f \\ t & h & i \end{vmatrix}}{D} \qquad y = \frac{\begin{vmatrix} a & s & c \\ d & r & f \\ g & t & i \end{vmatrix}}{D}$$

4. Calculate value of *x*. 5. Calculate value of *y*.

$$y = \frac{\begin{vmatrix} a & s & c \\ d & r & f \\ g & t & i \end{vmatrix}}{D}$$

6. Calculate value of z.

$$z = \frac{\begin{vmatrix} a & b & s \\ d & e & r \\ g & h & t \end{vmatrix}}{D}$$


Use Cramer's Rule to solve the following system

$$x - y + z = -4$$

 $2x - 3y + 4z = -15$
 $5x + y - 2z = 12$

Use Cramer's Rule to solve the following system

$$x-2y+3z = 7$$

 $2x + y + z = 4$
 $-3x + 2y - 2z = -10$

To find the determinant of a 3×3 matrix, find the sum of the products of the red diagonals, then subtract the sum of the products of the blue diagonals.

Steps to use Cramer's Rule

1. Put System of Equations in Form...

$$ax + by + cz = s$$

$$dx + ey + fz = r$$

$$gx + hy + iz = t$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = D$$

3. Find Determinant of Coefficient Matrix

$$Set = D$$

4. Calculate value of *x*.

$$x = \frac{\begin{vmatrix} s & b & c \\ r & e & f \\ t & h & i \end{vmatrix}}{D}$$

5. Calculate value of *y*.

$$y = \frac{\begin{vmatrix} a & s & c \\ d & r & f \\ d & k & i \end{vmatrix}}{D}$$

6. Calculate value of *z*.

$$z = \frac{\begin{vmatrix} a & b & s \\ d & e & r \\ g & h & t \end{vmatrix}}{D}$$