\boldsymbol{x}	x^2	
1	1]
2	4	9
3	9	
4	16	
5	25	
6	36	
7	49	
8	64	
9	81	
10	100	

perfect squares

 $\sqrt{18}$

$$\sqrt{24}$$

Simplify Square Roots using the Product Property

for every number $m \ge 0$ and $n \ge 0$,

$$\sqrt{m \cdot n} = \sqrt{m} \cdot \sqrt{n}$$

$$\sqrt{20} \cdot \sqrt{5}$$

$$\sqrt{18} \cdot \sqrt{2}$$

$\boldsymbol{\chi}$	x^2	
1	1	perfe
2	4	squar
3	9	
4	16	
5	25	
6	36	
7	49	
8	64	
9	81	

100

10

ct res Simplify Square Roots using the Quotient Property

for every number $m \ge 0$ and n > 0,

$$\sqrt{\frac{m}{n}} = \frac{\sqrt{n}}{\sqrt{n}}$$

$$\frac{25}{4}$$

$$\sqrt{75}$$

$$\sqrt{3}$$

$$\frac{9}{49}$$
 $\frac{\sqrt{9}}{\sqrt{6}}$

\boldsymbol{x}	χ^2	
1	1	perfect
2	4	squares
3	9	
4	16	
5	25	
6	36	
7	49	
8	64	
9	81	
10	100	

Simplify Square Roots by rationalizing the denominator
All perfect squares are factored out
No radicals allowed in the denominator of a fraction

$$\frac{5}{\sqrt{2}}$$

$$\frac{7}{\sqrt{5}}$$

\boldsymbol{x}	χ^2	
1	1	perfect
2	4	squares
3	9	
4	16	
5	25	
6	36	
7	49	
8	64	
9	81	
10	100	

Simplify Square Roots by combining like radical terms
Like radical terms have the same radicand

$$6\sqrt{2} + 4\sqrt{2}$$

$$6\sqrt{3} + 4\sqrt{5}$$

Like radical terms

Unlike radical terms

$$3\sqrt{3} + 5\sqrt{3}$$

$$8\sqrt{3} - 2\sqrt{27}$$

$$\sqrt{8} + 3\sqrt{2}$$

\boldsymbol{x}	χ^2
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100

perfect squares Using the **Product Property**

$$\sqrt{m \cdot n} = \sqrt{m} \cdot \sqrt{n}$$

Using the **Quotient Property**

$$\sqrt{\frac{m}{n}} = \frac{\sqrt{m}}{\sqrt{n}}$$

By rationalizing the denominator By combining like radical terms

$$\frac{5}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$$

$$6\sqrt{2} + 4\sqrt{2} = 10\sqrt{2}$$