A quadratic function is a function that can be written in the form

$$y = ax^2 + bx + c$$
where $a \neq 0$

Given the quadratic functions in standard form, determine the values of a, b, and c.

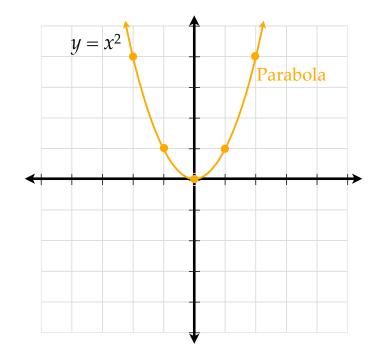
$$y = -4x^2 + x + 2$$
 $y = x^2 - 2x + 1$ $y = -x^2 - 9$ $y = 2x^2 + 4x$

The Quadratic Parent Function

$$y = x^2$$

 $a = 1$; $b = 0$; $c = 0$

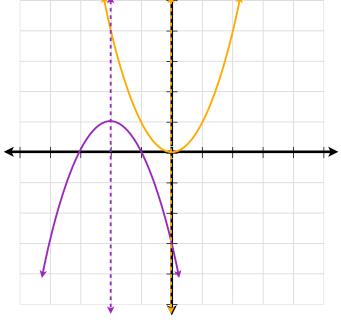
x	у
-2	4
-1	1
0	0
1	1
2	4



Parabolas can be formed in many positions
Pieces of parabolas

Axis of Symmetry
Line that divides the parabola into two
symmetric halves

$$x = 0$$
$$x = -2$$

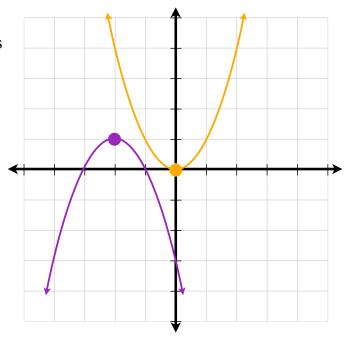


Parabolas can be formed in many positions
Pieces of parabolas

Vertex

If parabola opens up, minimum point
If parabola opens down, maximum point

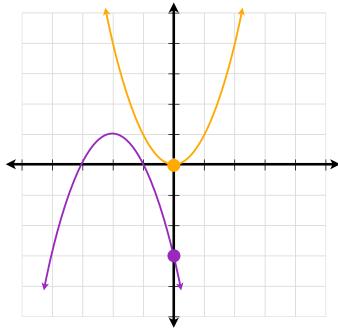
vertex - minimum (0,0)
vertex - maximum at (-2,1)



Parabolas can be formed in many positions Pieces of parabolas

y-intercept

Where the parabola intersects the *y*-axis

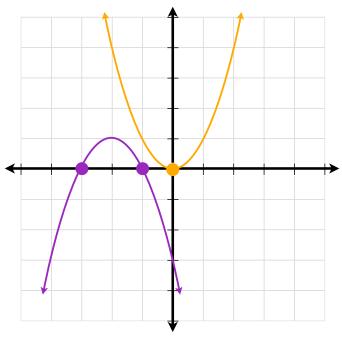


Parabolas can be formed in many positions
Pieces of parabolas

x-intercept(s)

Where the parabola intersects the *x*-axis Also called roots or zeros of the parabola

Parabola can have 0, 1, or 2 *x*-intercept(s)



How does *a* affect the graph of $y = ax^2$

$$y = x^2$$

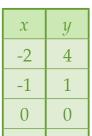
$$y = 2x^2$$

$$y = x^2$$
 $y = 2x^2$ $y = 3x^2$ $a = 1$ $a = 2$ $a = 3$

$$a = 1$$

$$a = 2$$

$$a = 3$$

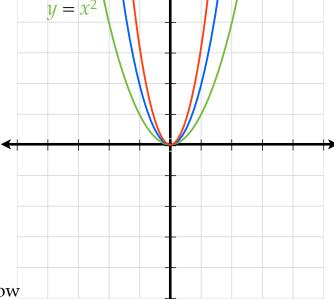


4

2

\boldsymbol{x}	y
-2	8
-1	2
0	0
1	2
2	8

\boldsymbol{x}	y
-2	12
-1	3
0	0
1	3
2	12



As a increases, the parabola gets more narrow

How does *a* affect the graph of $y = ax^2$

$$y = x^2$$

$$y = \frac{1}{2}x^2$$

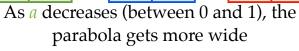
$$y = x^{2}$$
 $y = \frac{1}{2}x^{2}$ $y = \frac{1}{4}x^{2}$ $a = \frac{1}{4}$

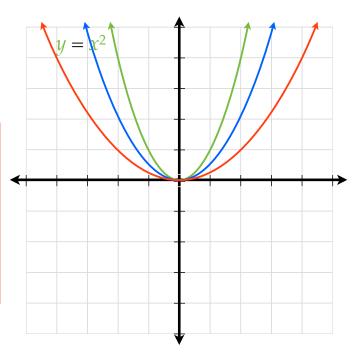
$$g - x$$
 $a = 1$

x	у	
-2	4	
-1	1	
0	0	
1	1	
2	1	

_	
x	y
-2	2
-1	$\frac{1}{2}$
0	0
1	<u>1</u> 2
2	2

4	
\boldsymbol{x}	у
-2	1
-1	$\frac{1}{4}$
0	0
1	$\frac{1}{4}$
2	1
 1 1 \	ı1





How does *a* affect the graph of $y = ax^2$

$$y = x^2$$

$$a = 1$$

$$y = -x^2$$

$$a = -1$$

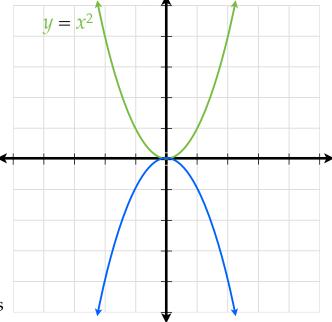
$$y = -x^2$$

$$a = 1$$

$$a = -1$$

x	y
-2	4
-1	1
0	0
1	1
2	4

\boldsymbol{x}	y
-2	-4
-1	-1
0	0
1	-1
2	-4



If *a* is negative, parabola reflects over *x*-axis

How does *c* affect the graph of $y = x^2 + c$

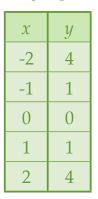
$$y = x^2$$

$$u = x^2 + 1$$

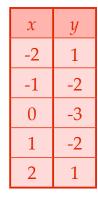
$$y = x^2$$
 $y = x^2 + 1$ $y = x^2 - 3$

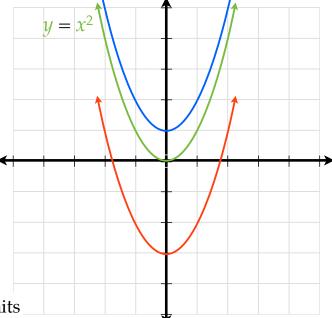
$$c = 0$$

$$c = 1$$



X	y
-2	5
-1	2
0	1
1	2
2	5





c causes the graph to move up and down *c* units

$$y = ax^2 + bx + c$$

$$a = ? b = ? c = ?$$

a determines width of parabola parabola opens up or down

c determines vertical shift of graph up or down