A perfect square trinomial is a trinomial in the form...

$$x^2 + 2xy + y^2$$
 or $x^2 - 2xy + y^2$

Perfect square trinomials can be factored into a binomial squared

$$x^2 + 2xy + y^2 = (x + y)^2$$
 $x^2 - 2xy + y^2 = (x - y)^2$

How to recognize a perfect square trinomial

$$4x^2 + 12x + 9$$

when $a \neq 1$, we can ask does $2 \cdot \sqrt{a} \cdot \sqrt{c} = |b|$?

How to recognize a perfect square trinomial

$$4x^2 + 36x + 81$$

when $a \neq 1$, we can ask does $2 \cdot \sqrt{a} \cdot \sqrt{c} = |b|$?

How to recognize a perfect square trinomial

$$64x^2 - 144x + 81$$

when $a \neq 1$, we can ask does $2 \cdot \sqrt{a} \cdot \sqrt{c} = |b|$?

How to recognize a perfect square trinomial

$$25x^2 - 30x + 9$$

when $a \neq 1$, we can ask does $2 \cdot \sqrt{a} \cdot \sqrt{c} = |b|$?

How to factor a perfect square trinomial

$$4x^2 + 12x + 9$$

 $a = 4$; $b = 12$; $c = 9$

Yes, $4x^2 + 12x + 9$ is a perfect square trinomial Draw parenthesis, put $\sqrt{a} \cdot x$ in front, then the sign of b, then the \sqrt{c} .

How to factor a perfect square trinomial

$$4x^2 + 36x + 81$$

 $a = 4$; $b = 36$; $c = 81$

Yes, $4x^2 + 36x + 81$ is a perfect square trinomial Draw parenthesis, put $\sqrt{a} \cdot x$ in front, then the sign of b, then the \sqrt{c} .

How to factor a perfect square trinomial

$$64x^2 - 144x + 81$$

 $a = 64$; $b = -144$; $c = 81$

Yes, $64x^2 - 144x + 81$ is a perfect square trinomial Draw parenthesis, put $\sqrt{a} \cdot x$ in front, then the sign of b, then the \sqrt{c} .

How to factor a perfect square trinomial

$$25x^2 - 30x + 9$$

 $a = 25$; $b = -30$; $c = 9$

Yes, $25x^2 - 30x + 9$ is a perfect square trinomial

Draw parenthesis, put $\sqrt{a} \cdot x$ in front, then the sign of b, then the \sqrt{c} .