A perfect square trinomial is a trinomial in the form...

$$x^2 + 2xy + y^2$$
 or $x^2 - 2xy + y^2$

Perfect square trinomials can be factored into a binomial squared

$$x^2 + 2xy + y^2 = (x + y)^2$$
 $x^2 - 2xy + y^2 = (x - y)^2$

How to recognize a perfect square trinomial

$$x^2 + 10x + 25$$

when a = 1, we can ask does $2 \cdot \sqrt{c} = |b|$?

How to recognize a perfect square trinomial

$$x^2 + 12x + 36$$

when a = 1, we can ask does $2 \cdot \sqrt{c} = |b|$?

How to recognize a perfect square trinomial

$$x^2 - 18x + 81$$

when a = 1, we can ask does $2 \cdot \sqrt{c} = |b|$?

How to recognize a perfect square trinomial

$$x^2 - 6x + 9$$

when a = 1, we can ask does $2 \cdot \sqrt{c} = |b|$?

How to factor a perfect square trinomial

$$x^2 + 10x + 25$$

 $a = 1; b = 10; c = 25$

Yes, $x^2 + 10x + 25$ is a perfect square trinomial Draw parenthesis, put x in front, then the sign of b, then the \sqrt{c} .

How to factor a perfect square trinomial

$$x^2 + 12x + 36$$

 $a = 1; b = 12; c = 36$

Yes, $x^2 + \frac{12}{12}x + \frac{36}{12}$ is a perfect square trinomial

Draw parenthesis, put x in front, then the sign of b, then the \sqrt{c} .

How to factor a perfect square trinomial

$$x^2 - 18x + 81$$

 $a = 1$; $b = -18$; $c = 81$

Yes, $x^2 - 18x + 81$ is a perfect square trinomial

Draw parenthesis, put x in front, then the sign of b, then the \sqrt{c} .

How to factor a perfect square trinomial

$$x^2 - 6x + 9$$

 $a = 1$; $b = -6$; $c = 9$

Yes, $x^2 - 6x + 9$ is a perfect square trinomial

Draw parenthesis, put x in front, then the sign of b, then the \sqrt{c} .