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Abstract

Tuberculosis (TB) continues to be a major global health burden, with high incidence and

mortality rates, compounded by the emergence and spread of drug-resistant strains. The

limitations of current TB medications and the urgent need for new drugs targeting drug-

resistant strains, particularly multidrug-resistant (MDR) and extensively drug-resistant

(XDR) TB, underscore the pressing demand for innovative anti-TB drugs that can shorten

treatment duration. This has led to a focus on targeting energy metabolism of Mycobacte-

rium tuberculosis (Mtb) as a promising approach for drug discovery. This study focused on

repurposing drugs against the crucial mycobacterial protein, electron transfer flavoprotein

oxidoreductase (EtfD), integral to utilizing fatty acids and cholesterol as a carbon source

during infection. The research adopted an integrative approach, starting with virtual screen-

ing of approved drugs from the ZINC20 database against EtfD, followed by molecular dock-

ing, and concluding with molecular dynamics (MD) simulations. Diacerein, levonadifloxacin,

and gatifloxacin were identified as promising candidates for repurposing against TB based

on their strong binding affinity, stability, and interactions with EtfD. ADMET analysis and

anti-TB sensitivity predictions assessed their pharmacokinetic and therapeutic potential.

Diacerein and levonadifloxacin, previously unexplored in anti-tuberculous therapy, along

with gatifloxacin, known for its efficacy in drug-resistant TB, have broad-spectrum antimicro-

bial properties and favorable pharmacokinetic profiles, suggesting potential as alternatives

to current TB treatments, especially against resistant strains. This study underscores the

efficacy of computational drug repurposing, highlighting bacterial energy metabolism and

lipid catabolism as fruitful targets. Further research is necessary to validate the clinical suit-

ability and efficacy of diacerein, levonadifloxacin, and gatifloxacin, potentially enhancing the

arsenal against global TB.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading communicable

disease and a significant contributor to global morbidity and mortality. In 2022, it was the sec-

ond leading cause of death from a single infectious agent after COVID-19, with 7.5 million

newly diagnosed cases and an estimated 10.6 million people developing it globally [1]. The dis-

ease resulted in approximately 1.30 million deaths, while 410,000 people developed multidrug-

resistant or rifampicin-resistant TB (MDR/RR-TB) [1]. The high incidence and mortality rates

of TB highlight the limitations of current medications, exacerbated by drug-resistant strains of

Mtb that resist both first line (MDR) and second line (XDR) treatments [2]. Drug resistance in

TB entails impeding prodrug activation, drug inactivation, extrusion, bacterial metabolic

adaptation, target protein modifications, membrane pump alterations, altered drug interac-

tions, and chromosome mutations [3, 4]. The pressing need for innovative anti-TB drugs is

underscored by the shortcomings of current therapies such as side effects, expense, and high

failure rates, compounded by the prolonged chemotherapy for TB, particularly MDR-TB, fos-

tering drug resistance; thus, there’s an urgent demand for new drugs targeting MDR and XDR

strains, while shortening treatment duration for both drug-sensitive and drug-resistant TB [5,

6]. The rise and dissemination of drug resistant Mtb, coupled with the challenge of developing

novel antimicrobials to counter resistance, have spurred scientists to explore new targets for

drug discovery. Most current antimycobacterial drugs target the synthesis of nucleic acids,

proteins, or folic acid, a focus that may have hindered the discovery of new therapeutics and

contributed to drug resistance [7]. However, energy metabolism has garnered attention as a

promising target for antibiotic drug development in mycobacteria, highlighted by the emer-

gence of several drugs in clinical and preclinical stages focusing on bioenergetics, such as

inhibitors of cytochrome bc1:aa3, NADH dehydrogenase, menaquinone synthesis, and ATP

synthase [8].

Mtb has evolved to inhabit and interact with the human immune system, its primary host

and reservoir, adapting its physiology to fulfill both cellular and pathogenic roles [9]. Mtb

relies on host cholesterol and fatty acids as its primary carbon sources during infection, with a

particular emphasis on cholesterol metabolism, especially in the chronic non-replicating

phase, to prevent the accumulation of toxic long-chain fatty acids [10, 11]. Mtb adeptly utilizes

host fatty acids and cholesterol in both intracellular and extracellular environments to generate

energy, construct its lipid-rich cell wall, and produce virulence factors, facilitating its survival

and pathogenesis [12]. Mtb efficiently utilizes lipids through β-oxidation pathways to generate

acetyl-CoA and propionyl-CoA, which are then channeled into central metabolic pathways for

energy production and biosynthesis, while mitigating carbon loss and toxicity risks [12, 13].

Mtb encodes numerous enzymes for distinct steps of beta-oxidation, including about 35 acyl-

CoA dehydrogenases (ACADs) [11]. Notably, all these ACADs utilize the electron transfer fla-

voprotein-oxidoreductase system as their electron acceptor. The electron transfer flavopro-

tein-oxidoreductase system is an evolutionarily conserved component of the electron

transport chain, essential for energy production [14]. It functions by receiving electrons from

FAD-containing acyl-CoA dehydrogenases and shuttling them to menaquinone, a liposoluble

electron carrier [15]. This process is pivotal for the efficient transfer of electrons within the

bacterial respiratory chain, contributing significantly to Mtb’s energy metabolism. Within

Mtb, a critical enzyme complex oversees this transfer of electrons from ACADs to menaqui-

none, comprising an electron transfer protein with two subunits, FixA (Rv3029c) and FixB

(Rv3028c), along with a membrane-bound electron transfer flavoprotein-oxidoreductase, EtfD

(Rv0338c) [11]. Deletion of the gene Rv0338c, encoding EtfD, disrupts β-oxidation at the step

catalyzed by ACADs, rendering mutants deficient in Rv0338c unable to grow on fatty acids
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and cholesterol [11]. Additionally, these mutants lacking Rv0338c are susceptible to the bacte-

ricidal effects of long-chain fatty acids, which impair growth and survival in mice, aligning

with the established fact that long-chain fatty acids are bactericidal due to their inhibition of

crucial bacterial enzymes such as FabI [11, 16]. Moreover, the accumulation of reduced flavin

adenine dinucleotide (FAD) induces reductive stress, impairing metabolism, causing protein

aggregation, generating reactive oxygen species (ROS), and leading to cell death in mycobacte-

rial cells [17]. Furthermore, inhibiting fatty acid catabolism triggers macrophage activation by

inducing mitochondrial reactive oxygen species, enhancing macrophage NADPH oxidase and

xenophagy activity, and consequently bolstering antimicrobial activity against Mtb infection

[18]. The gene Rv0338c has been deemed indispensable through Tn saturation mutagenesis

and is presumed to encode a putative hetero-disulfide reductase containing iron-sulfur, likely

participating in energy production and conversion [19, 20]. Further confirmation of Rv0338c

as an anti-Mtb drug target was achieved with the discovery of mutations in response to DBPI

compounds, conferring resistance and occurring near iron-sulfur domains [19]. Highlighting

the criticality of targeting bioenergetics in Mtb, this discussion emphasizes EtfD’s pivotal role

in lipid metabolism, where its disruption not only impairs Mtb’s growth on fatty acids and

cholesterol, enhancing susceptibility to long-chain fatty acids, but also augments macrophage

antimicrobial activity, thereby presenting a compelling therapeutic target.

Mitigating toxicity in drug development necessitates antibacterials that selectively inhibit

mycobacterial energy metabolism to avoid target-based toxicity from shared bacterial-eukary-

otic pathways [6]. Drug repurposing emerges as a vital strategy in combating TB by leveraging

drugs with established safety profiles and shorter regulatory paths, particularly through target-

ing novel pathways like bioenergetics with promising results [21]. This study aims to repur-

pose drugs approved in major jurisdictions around the world to target EtfD in Mtb by

employing structure-based drug design, a computer aided methodology. Through this

approach, we seek to identify promising therapeutic candidates that can effectively inhibit

EtfD, offering a novel and potent strategy against drug-resistant TB.

Material and methods

This study utilized various computational tools: Discovery Studio Visualizer 2020, and

PyMOL 3.0 for protein preparation and interaction visualization, COACH online metaserver

for ligand binding site prediction, PyRx 0.8 for virtual screening, AutoDock4 (AD4) and

AMBER for molecular docking and dynamics simulations, SwissADME and pkCSM for

ADMET analysis, and mycoCSM for predicting antituberculosis sensitivity (Fig 1) [22–29].

Structural evaluation of EtfD

The three-dimensional structure of the EtfD (ID: O33268) was retrieved from the AlphaFold

Protein Structure Database (AlphaFold DB) [30]. The predicted structure was evaluated for

reliability using predicted local distance difference test (pLDDT), and predicted aligned error

(PAE) scores, MolProbity, flDPnn, ProQ, ProSA, and InterPro tools [31–37]. This comprehen-

sive evaluation ensures the structure’s suitability for further studies.

Binding site prediction and characterization

The COACH metaserver was employed to predict the ligand binding site of EtfD, followed by

a detailed examination of its stability and interactions with ligand.
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Structure based virtual screening

Protein preparation. Discovery Studio Visualizer 2020 was utilized to prepare the EtfD.

Using the “Define & Edit binding site” option, the EtfD and predicted ligand (iron sulfur clus-

ter) were selected to define the binding site as a sphere keeping the ligand as the centroid. The

Fig 1. Methodology flowchart. pLDDT, predicted local distance difference test; PAE, predicted aligned error; flDPnn, putative function- and

linker-based Disorder Prediction using deep neural network.

https://doi.org/10.1371/journal.pone.0312860.g001
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XYZ coordinates of the binding site sphere centroid were noted down for further use. The

ligand was removed, polar hydrogens were added to the EtfD, and the protein structure was

stored in PDB format.

Ligand preparation. About 3447 drug molecules in SDF format were downloaded from

the ZINC20 database’s “world” filter, which contains approved drugs in major jurisdictions,

including the FDA approved [38]. The ligands were imported into the PyRx dashboard, where

energy minimization and conversion into pdbqt format were executed using OpenBabel.

Virtual screening. The prepared EtfD protein structure was loaded to the dashboard and

converted into autodock ligands in pdbqt format for input by PyRx for virtual screening. All

3447 ligands, along with the macromolecule, were defined within the Vina wizard. The auto

grid box was configured using grid box dimensions of X = 18.6943 Å; Y = 19.3218 Å;

Z = 21.9263 Å and previously obtained XYZ centroid coordinates (X = 4.2938; Y = 5.8156; Z =

-6.6638). The screening procedure involved docking all ligands against the EtfD protein using

the autodock vina wizard. The top 20 molecules were selected based on binding affinity for

subsequent molecular docking.

Molecular docking by AD4

Standard AutoDock protocols were applied for both receptor and ligand preparation, facili-

tated by AutoDockTools 1.5.7 software [39]. The grid center was set to specific XYZ centroid

coordinates (X = 4.2938, Y = 5.8156, and Z = -6.6638), determined in prior virtual screening.

The grid dimensions were set to 60 × 60 × 60 with a spacing of 0.375 Å, resulting in an AD4

grid size of 22.5 Å × 22.5 Å × 22.5 Å. Grid parameters were generated using Autogrid4, and

the docking parameter file was generated using AutoDockTools. Briefly, the EtfD was config-

ured for rigid docking, utilizing the genetic algorithm, with all other docking parameters

maintained at their default values. Notably, the number of genetic algorithm (GA) runs, and

the maximum number of energy evaluations (eval) were specifically set to 250 and 25,000,000

(which correspond to “long” option) respectively for molecular docking calculations. The AD4

program was then executed to obtain docking results, revealing the corresponding binding

energies. The three drugs selected for subsequent molecular dynamic (MD) simulation based

on their highest binding affinity were diacerein (ZINC ID: ZINC000003812842), levonadiflox-

acin (ZINC ID: ZINC000000603195), and gatifloxacin (ZINC ID: ZINC000003607120).

MD simulation

The top 3 docked drugs were subjected to MD simulations for investigating intermolecular

affinity in dynamics on a time scale of 100 ns, utilizing AMBER22. The FF19SB force field was

employed to prepare parameters of the EtfD while AMBER General Force Field 2 (GAFF2)

was used for drugs processing [40, 41]. The Antechamber tool of AmberTools23 was used to

generate parameters missing in GAFF2 to process drugs [42]. The EtfD was submitted to the

H++ server (http://biophysics.cs.vt.edu/H++) to predict its protonation state, resulting in the

addition of six Na+ counterions based on the predicted charge (-6 at pH 7.4), and the com-

plexes were then placed into a 10 Å truncated octahedron box of OPC water molecules [43,

44]. The equilibration step for MD systems utilized pmemd from AMBER22 for energy mini-

mization and pmemd.cuda for relaxation processes and final MD simulation run. The water

and ions were energy minimized for 1000 steps while everything else in the systems was

restrained. Then the systems were heated from 100K to 298 K over 1000 ps using Langevin

dynamics. Post-heating, the systems were relaxed under constant pressure for 1000 ps to facili-

tate density and volume equilibration, followed by a further round of energy minimization for

1000 steps. This was followed by relaxation for 2000 ps, wherein positional restraints on the
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protein backbone and ligands were progressively reduced leading to their complete removal in

the last 1000 ps of the relaxation, and production run of 100 ns. Post-simulation analyses,

including Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF),

Radius of Gyration (ROG), and hydrogen bond analysis, were conducted using the AMBER

CPPTRAJ module to assess the stability of complexes and visualize structural deviations over

time [45–47].

Binding free energy estimation by MM-G/PBSA

The MMPBSA.py package from AMBER22 was utilized to estimate the binding free energies

of the systems [48]. The primary objective of this analysis was to determine the difference in

free energy between two states of the complex, namely solvated and gas phase, using the fol-

lowing equation.

DGbind; solv ¼ DGbind;vacuum þ DGsolv; complex � DGsolv; ligand þ DGsolv; receptor

� �

From the complete simulation trajectories, 100 frames were selected as input for both MM/

PBSA and MM/GBSA calculations. The selection of these 100 frames was facilitated using an

input parameter file of AMBER22 MM-GB/PBSA, which enabled the consideration of frames

picked at equal time intervals from the simulation trajectories.

ADMET analysis

Physicochemical properties, medicinal chemistry, druglikeness, and ADMET analysis of the

top drugs were performed through online servers i.e. pkCSM and SwissADME [26, 27].

Anti-TB sensitivity prediction

We utilized the mycoCSM online server for predicting the anti-TB activity of the top 3 drugs

[28]. The compounds’ SMILES format was uploaded, and the analysis report was downloaded

in CSV format.

Results

Structural evaluation of EtfD

AlphaFold provides pLDDT and PAE metrics to assess predicted model’s accuracy. The

pLDDT score, ranging from 0 to 100, estimates the agreement between predicted and experi-

mental protein structures, effectively assessing local model quality, with lower scores typically

correlating with a higher likelihood of intrinsic disorder [31]. The predicted model of the EtfD

has an average pLDDT value of 82.56, indicating overall high confidence, with specific regions

exceeding 90. However, regions 342 to 357 and 745 to 882 display low values below 50, sug-

gesting likely disorder (Fig 2). PAE indicates the predicted error between relative positions of

residue pairs in protein structures, with low values suggesting well-defined relationships and

high values indicating unreliable positions [49]. The PAE 2D heatmap shows low confidence

in the positions of residues in regions 342–357 and 745–882 relative to the rest of residues,

which also have low pLDDT values, lack secondary structure, and exhibit coiled, ribbon-like

appearance, predicting disorder (S1 Fig). The structure similarity clustering in the AlphaFold

Protein Structure Database, using MMseq2 and Foldseek, identified a cluster related to EtfD,

comprising proteins with iron-sulfur binding domains and oxidoreductase activity across

diverse bacterial species, some also with cysteine-rich domains [50, 51]. This highlights struc-

tural homogeneity among EtfD-related proteins based on their shared iron-sulfur clusters and

oxidoreductase functions.

PLOS ONE In silico discovery of flavoprotein oxidoreductase inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0312860 November 15, 2024 6 / 21

https://doi.org/10.1371/journal.pone.0312860


The EtfD protein, consisting of 882 amino acids, is likely involved in energy production

and conversion, as indicated by InterPro (https://www.ebi.ac.uk/interpro/) [37]. It features an

N-terminal domain (residues 5–231) with six transmembrane segments, followed by a [4Fe-

4S] ferredoxin-type iron-sulfur binding domain (residues 286–412, IPR017812). This is suc-

ceeded by two cysteine-rich domains (residues 477–568 and 607–693, IPR004017). The C-ter-

minal domain is characterized by a proline—alanine-rich, repetitive structure of low

complexity and is predicted to be intrinsically disordered.

Intrinsically disordered regions (IDRs) lack a stable three-dimensional structure due to low

hydrophobicity and high net charge but can adopt various configurations upon ligand binding

based on amino acid composition and charge patterning, allowing them to efficiently interact

with multiple targets under physiological conditions [52–54]. The flDPnn, a disorder predic-

tion tool utilizing deep neural networks, accurately predicts disorder and fully disordered pro-

teins, while also generating putative functions for predicted IDRs [34]. The flDPnn server

identified same regions as IDRs that corresponded with low pLDDT and high PAE scores

from AlphaFold. However, it also predicted these regions to have putative functions in binding

with various biomolecules (S1 Fig).

MolProbity is a tool used to validate and analyze biomolecular 3D structures by assessing

factors like geometry, steric clashes, and overall structural validity [33]. MolProbity analysis of

EtfD revealed 93% of residues in the favored region and additional 4.6% in the allowed region

of the Ramachandran plot, with 21 outliers observed. Notably, 20 out of 21 outliers corre-

sponded to residues within predicted disordered regions (S2 Fig). The Ramachandran distri-

bution Z-score for EtfD was -1.55 ± 0.26, indicating a reasonable agreement with typical

protein structures and suggesting that the predicted dihedral angles are within acceptable

ranges. The ProSA results show that the Z-score for the predicted EtfD model is -10.15, which

falls within the range of native conformations (S3 Fig). The overall residue energies are pre-

dominantly negative, except for some peaks observed in the N-terminal transmembrane

Fig 2. Evaluation of EtfD’s predicted structure. (a) EtfD’s structure colored by pLDDT scores, with red indicating high confidence and blue indicating low

confidence. The cartoon representation is overlaid with a semi-transparent surface. (b) pLDDT score plot.

https://doi.org/10.1371/journal.pone.0312860.g002
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regions and the C-terminal disordered region (S4 Fig). Additionally, the ProQ LG score of

7.147 suggests that the predicted EtfD model closely resembles native protein structures.

The overall confidence in EtfD’s predicted structure is high, except for two disordered

regions with the lowest pLDDT scores, which also exhibit uncertain positions relative to the

protein, as indicated by high PAE values. However, the rest of the structure shows high reli-

ability, with many regions having pLDDT values over 90, comparable to experimental struc-

tures. This accuracy supports various applications, especially for precise tasks like

characterizing binding sites. The connecting loops also have favorable pLDDT values (70–90),

indicating good backbone prediction. This assessment confirms the model’s reliability, making

it suitable for further research, especially in drug design against this protein.

Binding site prediction and characterization

Identifying a protein’s ligand binding site is essential for understanding its function and

designing therapeutic compounds to modulate its activity [55]. The EtfD model was submitted

to the COACH server, employing a metaserver approach to predict potential ligand binding

sites and propose probable ligands interacting with the protein of interest. COACH ranks the

predicted ligand binding sites based on the C-score, a confidence score ranging from 0 to 1,

where a higher score indicates a more reliable prediction. COACH detected several ligand

binding sites, and the site ranked first, with the highest confidence score of 0.20, was chosen

for subsequent analysis (Fig 3a and 3b). The COACH server analysis revealed that the key

amino acid residues constituting the active site of EtfD include CYS 295, THR 296, GLU 297,

CYS 298, GLY 299, CYS 301, LYS 317, CYS 402, PRO 403, and ILE 406 (Fig 3c). It is crucial to

note that the confidence score for this binding site is relatively low. However, it is noteworthy

that individual algorithms, such as TM-Site (Score: 0.35), S-Site (Score: 0.30), and ConCavity

(Score: 0.55), gave relatively high scores for almost the same amino acids predicted to be bind-

ing site residues. However, considering the important findings discussed in previous sections,

it is reasonable to expect that the predicted residues constitute a binding site for the iron-sulfur

cluster, and these predictions align with our expectations.

The predicted ligand, Iron Sulfur Cluster (SF4), directly interacts with residues THR 296,

CYS 298, GLY 299, CYS 301, CYS 402, and HIS 408. Although not predicted as a binding site

residue, HIS 408 plays a crucial role, engaging in two pi-sulfur interactions and a hydrogen

bond with two sulfur atoms of SF4. Additional significant interactions of SF4 include hydro-

gen bonds with CYS 301, GLY 299, CYS 298, and two with THR 296. SF4 forms coordinate

bonds with CYS 295, CYS 298, and CYS 301, with the fourth iron atom participating in a

metal acceptor interaction with CYS 402 (Fig 3d and S5 Fig).

Examining the intricate interactions between binding site and its surroundings is crucial

for understanding structural stability and functional significance. Binding site residues engage

in diverse interactions with surrounding residues, encompassing hydrogen bonds, electrostatic

interactions, alkyl interactions, and salt bridges. Notably, Glutamate 297, Glycine 299, Lysine

317, and Cysteine 402 are involved in multiple hydrogen bonds with surrounding residues (S5

Fig).

The identification of the predicted binding site in EtfD, along with its probable ligand, an

iron sulfur cluster, provides compelling evidence that supports our initial assumptions about

the protein’s involvement in metabolism. Targeting this binding site can be a promising strat-

egy for drug design against Mycobacterium tuberculosis (Mtb), underlining the potential sig-

nificance of this structural insight in advancing therapeutic interventions.
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Virtual screening

A database of 3,447 approved drug molecules was screened against EtfD using PyRx 0.8. From

Vina docking results, the top 20 compounds with binding affinities greater than -8.7 kcal/mol

were prioritized for repurposing (S1 Table).

Molecular docking

The top 20 molecules were re-docked against EtfD using AD4, with binding energies ranging

from -7.31 to -10.47 kcal/mol (Table 1). The top hits for further MD simulation studies are

ZINC000003812842 (diacerein), ZINC000000603195 (levonadifloxacin), and

Fig 3. EtfD’s ligand binding site analysis. (a) The overall protein structure is shown in blue as a cartoon, with the surface displayed. Binding site

residues are highlighted in red and shown as balls. (b) Close-up view of the binding site. (c) Ligand binding site residues with their corresponding

residue specific probabilities, as predicted by the COACH metaserver. (d) Predicted interactions between the ligand SF4 and binding site residues.

Hydrogen bonds are shown in olive green, iron-sulfur coordinate bonds in purple, carbon in black, nitrogen in blue, oxygen in red, sulfur in yellow, and

iron in pink. Hydrophobic interactions are not shown to avoid obscuring details, but the names of the residues involved in hydrophobic interactions are

labeled in black.

https://doi.org/10.1371/journal.pone.0312860.g003
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ZINC000003607120 (gatifloxacin), with binding energies of -10.47, -10.04, and -10.02 kcal/

mol, respectively. Diacerein forms hydrogen bonds with ARG133, ARG146, and ARG300, and

a carbon hydrogen bond with ALA155. It also exhibits hydrophobic interactions with HIS235

and CYS298, and electrostatic interactions with ARG146. Levonadifloxacin interacts with EtfD

through hydrogen bonds involving ARG133, ARG146, ARG300, and GLY154, and a carbon

hydrogen bond with ALA155. Hydrophobic interactions, including pi-alkyl and alkyl interac-

tions, occur with HIS235, CYS298, and HIS74, enhancing stability. Gatifloxacin predomi-

nantly relies on hydrophobic interactions, involving key amino acids PHE129, ILE132,

ARG133, PHE147, ALA155, VAL158, and LYS232. PHE129 forms four significant hydropho-

bic interactions. Additionally, ARG133 and ARG300 contribute to hydrogen bonding, along

with ALA155. HIS74 and HIS235 facilitate halogen (fluorine) interactions, with HIS74 also

engaging in a hydrogen bond. ARG146 stabilizes the interaction through electrostatic interac-

tions (S6 Fig). Fig 4 visually illustrates the docking interactions between EtfD and diacerein,

levonadifloxacin, and gatifloxacin.

MD simulation analysis

MD is a computational technique modeling the dynamic behavior of molecular systems over

time, treating all elements as flexible, and is typically used to further investigate the highest-

ranked complex for detailed exploration [56]. Two widely used metrics for assessing structural

fluctuations of macromolecules are Root-Mean-Square Deviation (RMSD) and Root-Mean-

Square Fluctuations (RMSF). RMSD quantifies the average displacement of atoms from a ref-

erence structure, aiding in the analysis of time-dependent structural motions, often indicating

stability or divergence, which may suggest simulation non-equilibration [45]. Whereas RMSF

measures the displacement of specific atoms or groups from the reference structure, indicating

Table 1. Binding affinity scores for top 20 drug molecules (AutoDock4).

No. ZINC ID/ drug name AutoDock4 docking score (kcal/mol)

1 ZINC000003812842/ diacerein -10.47

2 ZINC000000603195/ levonadifloxacin -10.04

3 ZINC000003607120/ gatifloxacin -10.02

4 ZINC000003794622/ nadifloxacin -9.94

5 ZINC000000001894/ pefloxacin -9.80

6 ZINC000003873157/ lomefloxacin -9.49

7 ZINC000003919580/ formestane -9.31

8 ZINC000003875998/ isopregnenone -9.21

9 ZINC000000020220/ ciprofloxacin -9.19

10 ZINC000000000917/ amifloxacin -9.01

11 ZINC000000601275/ talniflumate -8.91

12 ZINC000004081771/ testolactone -8.66

13 ZINC000003812989/ nalbuphine -8.36

14 ZINC000000538285/ repirinast -8.29

15 ZINC000013509425/ estrone -8.15

16 ZINC000000119434/ strychnine -7.82

17 ZINC000003812988/ butorphanol -7.79

18 ZINC000003812889/ tibolone -7.67

19 ZINC000008143788/ artemisinin -7.60

20 ZINC000003779726/ pazufloxacin -7.31

https://doi.org/10.1371/journal.pone.0312860.t001
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Fig 4. Molecular models showing binding interactions between EtfD and diacerein, levonadifloxacin, and gatifloxacin in 3D and 2D. (a and b)

EtfD-diacerein, (c and d) EtfD-levonadifloxacin, (e and f) EtfD-gatifloxacin. EtfD hydrogen-bonding residues are shown as sticks (carbon: green,

nitrogen: blue, oxygen: red), with hydrogen bonds represented by red dashed lines. 2D interaction diagrams follow the same color scheme as described

in Fig 3d. Common amino acids involved in interactions with EtfD across diacerein, levonadifloxacin, and gatifloxacin are ARG133, ARG146, ALA155,

HIS235, and CYS298.

https://doi.org/10.1371/journal.pone.0312860.g004
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protein flexibility during a simulation [45]. RMSD and RMSF gauge protein mobility via rigid

body alignment to a reference, but their sensitivity to fluctuating subsets can inflate values,

potentially misrepresenting overall dynamics [45]. The Radius of Gyration (RoG) is pivotal in

assessing amino acid residue packing for protein stability, with conformational changes upon

ligand binding making its calculation crucial for predicting macromolecular structural activity

and stability [46, 47]. Hydrogen bonds and hydrophobic interactions are critical for stabilizing

macromolecules, influencing binding affinity, drug efficacy, and providing essential insights

for drug design and behavior prediction, with their paramount role in stabilizing the protein-

ligand complex significantly impacting drug-target binding (Fig 5 and S7 Fig) [47].

Diacerein. The RMSD of the EtfD backbone complexed with diacerein gradually

increased over the first 25 ns, followed by fluctuations until 45 ns, with a peak at 43 ns. It then

fluctuated until 65 ns while gradually converging toward the average RMSD. Beyond 65 ns, the

Fig 5. Investigating the stability of EtfD-drug complexes through MD simulations using various statistical parameters. (a) RMSD. (b) RMSF. (c) RoG. (d)

hydrogen bonding. RMSD, root mean square deviation; RMSF, root mean square fluctuation; RoG, radius of gyration.

https://doi.org/10.1371/journal.pone.0312860.g005
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RMSD stabilized with only slight oscillations, indicating a steady conformation. The average

RMSD of the backbone of EtfD, excluding IDRs, was calculated as 2.2315 ± 0.3845. Conversely,

the full protein backbone RMSD displayed significant fluctuations, largely attributed to the

IDRs, with a mean value of 6.0513 ± 3.928. Comparison of the two RMSD values indicates

overall stability of the protein structure throughout the simulation, except for the IDRs which

exhibited the highest fluctuations. Additionally, RMSF analysis confirmed this observation,

with residues excluding IDRs displaying RMSF values of 1.8149 ± 0.5736, while IDRs exhibited

considerably higher RMSF values (12.6199 ± 4.6786). The Radius of Gyration (RoG) value for

the bound complex was 34.0314 ± 0.3725, suggesting stability throughout the simulation, with

minor fluctuations throughout simulation within acceptable limits. The presence of numerous

hydrogen bonds between diacerein and EtfD throughout the simulation, involving residues

HID74, ARG133, ARG146, THR296, and ARG300, underscores the high stability of the com-

plex, with sustained interactions observed for ARG133 and ARG300.

Levonadifloxacin. The RMSD of the EtfD backbone, excluding IDRs, exhibited a gradual

increase up to 20 ns, followed by a stable phase until 30 ns. Between 30 and 60 ns, significant

fluctuations were observed, transitioning to moderate fluctuations until 80 ns, after which the

RMSD converged. The average RMSD of the EtfD backbone, excluding IDRs, was

2.0655 ± 0.3063 Å. Conversely, RMSD of the full protein’s backbone exhibited notable fluctua-

tions primarily due to IDRs, with a recorded value of 5.7226 ± 3.7903 Å, highlighting the over-

all stability of the protein structure throughout the simulation, except for IDRs with high

fluctuations. The RMSF analysis further validated these observations, showing residues exclud-

ing IDRs with an RMSF value of 1.7463 ± 0.6670 Å, while residues within IDRs displayed nota-

bly higher RMSF values of 11.0471 ± 4.6931 Å. Additionally, the Radius of Gyration (RoG)

value for the bound complex was determined to be 33.5237 ± 0.3619 Å, indicating stability

throughout the simulation duration. LEU64, TRP67, PRO70, ARG133, ARG146, HIE233, and

ARG300 amino acids formed hydrogen bonds with levonadifloxacin during the simulation.

Notably, HIE233, ARG146, PRO70, ARG133, and ARG300 maintained consistent interactions

with levonadifloxacin throughout, with HIE233 being the most prominent, followed by

ARG146, PRO70, ARG133, and ARG300.

Gatifloxacin. The RMSD of the EtfD backbone, excluding IDRs, gradually increased in

the first 10 ns and remained stable with minor fluctuations until 45 ns. This was followed by a

notable rise and extreme fluctuations up to 65 ns, after which the structure continued fluctuat-

ing until 90 ns, before stabilizing in the final 10 ns. The average RMSD of the EtfD backbone

with gatifloxacin was 2.1685 ± 0.5704 Å, indicating stability, while the full protein backbone

exhibited high fluctuations primarily due to IDRs (4.7926 ± 3.3495 Å). Comparative analysis

showed overall protein structure stability except for IDRs, supported by RMSF values (residues

excluding IDRs: 1.8163 ± 0.4962 Å, IDRs: 11.2945 ± 4.2492 Å). RoG value (33.4583 ± 0.3799

Å) indicated stability in the bound complex throughout the simulation. Notably, HID74,

ARG133, ARG146, HID151, ASN152, ALA155, TRP156, HID233, and ARG300 residues

formed significant hydrogen bonds with gatifloxacin, highlighting the high stability of this

complex. Particularly, ARG300 exhibited multiple hydrogen bonds with the drug, followed by

HID74 and ARG146.

Binding free energy estimation

To validate the drugs’ affinity to EtfD, MM-GB/PBSA post-simulation processing was con-

ducted to obtain different free energies of the complexes (Table 2).
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ADMET analysis

Table 3 provides a comprehensive overview of the pharmacokinetics of the screened com-

pounds, encompassing druglikeness, medicinal chemistry, and various toxicity analyses. The

ADMET analysis of diacerein unveiled quinone_A (PAINS) and phenol_ester (Brenk) alerts,

suggesting assay interference and chemical instability, while levonadifloxacin and gatifloxacin

exhibited no alerts or issues While effective at identifying many aggregators and assay artifacts,

the PAINS rule’s broad application, absence of mechanism exploration, and incomplete valida-

tion contribute to its low precision and limited scope for detection [57]. Furthermore, the pres-

ence of a Brenk violation in diacerein due to the phenol ester group is mitigated by its

metabolic conversion to rhein, which lacks such problematic substructures, thus these alerts

can be safely ignored.

Anti-TB sensitivity prediction

Certainly: Traditional drug testing against Mtb is challenging due to slow bacilli evolution, but

machine learning tools like mycoCSM predict compound sensitivity preemptively (Table 4).

Discussion

The emergence and persistence of drug-resistant strains of Mtb highlights the ongoing need

for innovative approaches in TB research. Various strategies to discover new anti-tubercular

agents include repurposing approved drugs, high-throughput phenotypic and target-based

screening, and optimizing chemical structures of known drugs [58–62]. Utilizing virtual

screening, molecular docking, and MD simulation, the study aimed to repurpose drugs target-

ing the EtfD, initially assessing the reliability of its predicted structure, and predicting its bind-

ing site. This process led to the identification of potential drug candidates, including diacerein,

levonadifloxacin, and gatifloxacin.

Diacerein, an anthraquinone derivative drug, demonstrates diverse pharmacological effects,

encompassing anti-inflammatory, anticancer, antimicrobial, antidiabetic, chondroprotective,

nephroprotective, hepatoprotective, and additional beneficial properties [63, 64]. Research

indicates its antimicrobial activity against gram-positive cocci in vitro, with transcriptome

analysis revealing its inhibition of bacterial growth by targeting oxidative phosphorylation,

substance transport, secondary metabolism, and biosynthesis [65]. Additionally, rhein, a

metabolite of diacerein, enhances phagocytosis in macrophages, significantly augmenting

TNF-α secretion, independent of lipopolysaccharide presence [66]. Furthermore, novel chemi-

cals, developed by optimizing the anthraquinone scaffold of rhein, exhibit promising activity

against Mtb while maintaining low toxicity [67]. Given its antimicrobial activity against gram-

Table 2. MM-G/PBSA net binding energy of the molecules presented for each energy component.

Compound ΔG binding ΔG electrostatic ΔG binding vdW ΔG binding gas phase ΔG polar solvation ΔG non-polar solvation ΔG solvation

MM-GBSA

Diacerein -47.6459 -51.4789 -42.0295 -93.5084 51.9485 -6.0861 45.8625

Levonadifloxacin -39.0626 -32.9499 -43.8081 -76.7580 42.4935 -4.7981 37.6954

Gatifloxacin -41.0665 -34.0843 -37.2723 -71.3566 36.2007 -5.9106 30.2901

MM-PBSA

Diacerein -59.1380 -49.9564 -42.4629 -92.4193 66.8367 -33.5554 33.2813

Levonadifloxacin -43.0536 -31.5991 -42.0791 -73.6782 61.2473 -30.6227 30.6246

Gatifloxacin -59.3589 -34.2496 -37.1834 -71.4330 44.0462 -31.9721 12.0741

https://doi.org/10.1371/journal.pone.0312860.t002
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Table 3. Predicted druglikeness and ADMET analysis of the compounds.

Property Compound

Physiochemical properties Diacerein Levonadifloxacin Gatifloxacin

Formula C19H12O8 C19H21FN2O4 C19H22FN3O4

Molecular weight 368.29 g/mol 360.38 g/mol 375.39 g/mol

Num. heavy atoms 27 26 27

Num. arom. heavy atoms 12 10 10

Fraction Csp3 0.11 0.47 0.47

Num. rotatable bonds 5 2 4

Num. H-bond acceptors 8 5 6

Num. H-bond donors 1 2 2

Molar refractivity 89.71 99.46 106.55

TPSA 124.04 Å2 82.77 Å2 83.80 Å2

Lipophilicity

Consensus log Po/w 1.99 2.03 1.28

Water solubility Soluble Soluble Very soluble

Pharmacokinetics

GI absorption High High High

BBB permeant No No No

P-gp substrate No Yes Yes

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No No No

CYP2D6 inhibitor No Yes No

CYP3A4 inhibitor No No No

Log Kp (skin permeation) -7.20 cm/s -7.37 cm/s -9.12 cm/s

Druglikeness

Lipinski Yes, 0 violation Yes, 0 violation Yes, 0 violation

Ghose Yes Yes Yes

Veber Yes Yes Yes

Egan Yes Yes Yes

Muegge Yes Yes Yes

Bioavailability score 0.56 0.56 0.55

Medicinal Chemistry

PAINS 1Alert: quinone_A 0 Alert 0 Alert

Brenk 1Alert: phenol_ester 0 Alert 0 Alert

Synthetic accessibility 3.08 3.75 3.47

Toxicity

Hepatotoxicity Yes Yes Yes

Skin sensitization No No No

T.Pyriformis toxicity (log ug/L) 0.285 0.282 0.283

AMES toxicity No No No

Minnow toxicity (log mM) 1.954 1.951 1.601

Max. tolerated dose (humans) (log mg/kg/day) 0.636 1.224 1.158

Excretion

Total clearance (log ml/min/kg) 0.348 0.549 0.693

Renal OCT2 substrate No No No

https://doi.org/10.1371/journal.pone.0312860.t003
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positive cocci, inhibition of oxidative phosphorylation, and ability to enhance phagocytosis in

macrophages, diacerein shows promise for repurposing against TB. Moreover, the develop-

ment of new anti-TB compounds through the engineering of rhein adds weight to this poten-

tial application.

Levonadifloxacin, a novel broad-spectrum fluoroquinolone, effectively targets challenging

infections caused by multidrug-resistant Gram-positive, intracellular, atypical, anaerobic, and

Gram-negative bacteria, particularly respiratory pathogens, with superior safety, tolerability,

and minimal drug-drug interactions attributed to its lack of CYP interaction [68]. Levonadiflox-

acin demonstrates superior penetration into alveolar macrophages (AMs) and epithelial lining

fluid (ELF), with mean values surpassing those reported for levofloxacin and moxifloxacin.

Additionally, its killing effect against susceptible bacteria has been found to be superior to that

of comparator quinolones [69]. Levonadifloxacin offers the advantage of effectiveness against

resistant organisms while demonstrating a notably low mutation rate [70, 71]. Fluoroquinolones

like gatifloxacin, moxifloxacin, and levofloxacin are pivotal in treating drug-resistant TB when

combined with standard regimens such as HREZ [72]. Gatifloxacin has achieved an 87% success

rate in MDR-TB patients susceptible to the drug, compared to 51% in those with high-level

resistance, and has also shown significant impact in treating XDR-TB [73, 74]. Studies indicate

that gatifloxacin-based regimens outperform those based on moxifloxacin or levofloxacin [75].

High-dose gatifloxacin-based shorter treatment regimens (STR) are effective for drug-resistant

TB, though careful monitoring for hepatotoxicity and QT interval prolongation is essential [76].

In conclusion, this study highlights three potential drugs for repurposing against TB. Nota-

bly, gatifloxacin has already been used in anti-tuberculous regimens, while the top two candi-

dates, diacerein and levonadifloxacin, have not yet been utilized as anti-tuberculous drugs.

Given the broad-spectrum activity of diacerein and levonadifloxacin, alongside existing evi-

dence for gatifloxacin, further experimental and clinical studies are strongly recommended to

evaluate their suitability and clinical efficacy, potentially integrating them into conventional

TB treatment regimens. Our future work will prioritize these drugs to assess their anti-TB

activity through comprehensive in vitro and in vivo experimentation.
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S1 Fig. flDPnn and predicted aligned error (PAE). (a) flDPnn (putative function- and
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Table 4. Anti-TB activity prediction of top drugs through online server mycoCSM.

Compound Predicted Mtb. MIC (log μM) Caseum FU (%) MRTD log (mg/kg/day)
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Levonadifloxacin -5.429 15.609 1.005

Gatifloxacin -5.488 21.732 0.929

Rifampicin -6.312 7.493 1.106

Isoniazid -4.942 67.2 1.166

MRTD, Maximum Recommended Therapeutic Dose. Note: Caseum FU (%) represents the predicted ability of compounds to penetrate necrotic tuberculosis foci, with

higher values indicating a greater likelihood of penetration into these foci.
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