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Abstract

During the COVID-19 pandemic, the field of infectious disease modeling
advanced rapidly, with forecasting tools developed to track trends in trans-
mission dynamics and anticipate potential shortages of critical resources such
as hospital capacity. In this study, we compared short-term forecasting ap-
proaches for COVID-19 hospital admissions that generate forecasts one to five
weeks ahead, using retrospective electronic health records. We extracted dif-
ferent features (e.g., daily emergency department visits) from an individual-
level patient dataset covering six hospitals located in the region of Bern,
Switzerland from February 2020 to June 2023. We then applied five meth-
ods – last-observation carried forward (baseline), linear regression, XGBoost
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and two types of neural networks – to time series using a leave-future-out
training scheme with multiple cutting points and optimized hyperparame-
ters. Performance was evaluated using the root mean square error between
forecasts and observations. Generally, we found that XGBoost outperformed
the other methods in predicting future hospital admissions. Our results also
show that adding features such as the number of hospital admissions with
fever and augmenting hospital data with measurements of viral concentra-
tion in wastewater improves forecast accuracy. This study offers a thorough
and systematic comparison of methods applicable to routine hospital data for
real-time epidemic forecasting. With the increasing availability and volume
of electronic health records, improved forecasting methods will contribute to
more precise and timely information during epidemic waves of COVID-19
and other respiratory viruses, thereby strengthening evidence-based public
health decision-making.
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COVID-19, hospital admissions, forecasting, local level, machine learning,
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1. Introduction1

The COVID-19 pandemic has highlighted the need for reliable infec-2

tious disease monitoring and forecasting systems. As SARS-CoV-2 spread3

globally, researchers, healthcare professionals, public health authorities, and4

governments undertook extensive efforts to mitigate its impact and control5

transmission dynamics. A key priority was to ensure that hospital capacity,6

particularly in intensive care units, was not exceeded. Whenever hospital7

capacities were exceeded, hospitals were forced to implement crisis care stan-8

dards, including treatment protocol classifications that prioritized patients9

with the highest probability of survival, often leading to delayed or reduced10

care for other patients. This also resulted in the postponement of elective11

procedures, in increased stress and burnout among healthcare workers, and12

in higher mortality rates due to limited access to critical resources such as13

ICU beds and ventilators (Anderegg et al., 2022; Didriksson et al., 2022). In14

such situations, short-term forecasts aimed at anticipating new hospital ad-15

missions a few weeks in advance can be invaluable for public health decision16

makers and hospital management.17

Researchers worldwide have applied numerous approaches to forecast the18

spread and impact of SARS-CoV-2 in different settings based on various19

types of data. Due to increasing digitization, substantially more data re-20

flecting various aspects of the pathogen were collected during the COVID-1921

pandemic compared to the historic major infectious disease outbreaks. Ex-22

amples of such data are wearable or smartphone sensor data (Grantz et al.,23

2020), viral genome sequences (Shu and McCauley, 2017; Furuse, 2021; CDC,24

2024; Hodcroft et al., 2025), viral load measurements in wastewater (Morvan25

et al., 2022; Jahn et al., 2022), and electronic health records from hospitals26

and medical practices (Qian et al., 2021). A wide variety of methods have27

been used to produce forecasts, including mechanistic models (e.g., deter-28

ministic or stochastic compartmental models, agent-based models), statisti-29

cal time series models (e.g., ARIMA, exponential smoothing, regression) and30

machine learning methods (e.g., tree-based models, neural networks) (Krae-31

mer et al., 2025). In both the United States and Europe, groups of scientists32

developed standardized forecasting pipelines for COVID-19 cases, hospital33

admissions, and deaths in different geographic regions (Cramer et al., 2021;34

ECDC, 2021, 2023). This allowed the combination of multiple models from35

different groups into an ensemble forecast with a single cone of uncertainty.36

Hospital capacity is an important indicator when planning public health37
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interventions during major outbreak of an infectious disease. Therefore, mod-38

els that provide estimates of expected admissions to hospitals on a national39

or local level in the coming weeks can be of great benefit for taking de-40

cisions on the introduction of public health measures. One approach has41

been to systematically test for infection with SARS-CoV-2 all patients hos-42

pitalized for elective procedures, which outperformed state-based data in43

predicting the local clinical burden(Covello et al., 2021). Furthermore, more44

detailed hospital data like ICU admission and discharge or ambulance service45

and emergency unit notes have been used for predicting COVID-19-related46

hospital admissions within a region (Qian et al., 2021; Ferté et al., 2022).47

Augmenting data extracted from electronic health records with exogenous48

variables like weather or mobility data also lead to more accurate forecasts49

of local COVID-19 related hospital admissions compared to using hospital50

data alone Ferté et al. (2022); Zhang et al. (2022); Klein et al. (2023).51

In this study, we compared the performance of different machine learning52

models to forecast the number of COVID-19 hospital admissions based on53

routinely collected electronic health records (EHR) and wastewater data. We54

hypothesized that quantities such as the occupancy of a hospital’s emergency55

ward, vital signs of hospital patients such as fever, or measurements of viral56

load in wastewater have high predictive power for short-term forecasting of57

COVID-19-related hospital admissions and lead to more accurate predictions58

than relying on the number of hospital admissions in the previous days alone.59

First, we extracted candidate variables that could have high predictive power60

for the spread of SARS-CoV-2 from a large individual patient-level EHR61

dataset from six hospitals in the Bern region, Switzerland, in the period from62

February 2020 to June 2023. Second, we trained different machine learning63

models with different combinations of features on the data to forecast the64

number of COVID-19 hospital admissions up to five weeks in advance. Third,65

we evaluated the performance of the models in comparison to a baseline66

model across different forecasting setups.67

2. Data and Methods68

2.1. Forecasting setup69

This study aimed to validate and compare methods for forecasting the70

weekly number of COVID-19 hospital admissions up to five weeks in ad-71

vance, using routinely collected hospital data from the previous days. As a72
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case study, we drew on electronic health records (EHR) data from six hospi-73

tals belonging to the Insel Gruppe network, all located in the region of Bern,74

Switzerland, collected from 25 February 2020, the day the first COVID-1975

case was detected in Switzerland (FOPH, Federal Office of Public Health,76

2020), and 30 June 2023 (full study period). We adopted a retrospective77

approach by applying five forecasting models to historical time series data –78

where outcomes are already known – enabling a comparison of the perfor-79

mance of each method. We employed a leave-future-out strategy incorporat-80

ing 12 separate test datasets, each covering a period of two to four months.81

We selected the 12 cut-off points based on peaks and valleys of the daily time82

series of COVID-19 hospital admissions in the next seven days (Supplemen-83

tary Figure S1 A and B of Appendix A). The training datasets contained all84

data collected before the respective cut-off point (Supplementary Figure S1 C85

and D of Appendix A). The target week was defined as the sliding seven-day86

window for which hospital admissions were forecast with the trained models87

(Figure 1). We systematically varied the forecasting horizon k (i.e., the gap88

between the last day of observed data and the start of the target week) and89

the lookback window p (i.e., the number of past days of data included in the90

model). More formally, placing ourselves at time t, we used data from days91

{t−p, t−p+1, . . . , t−1} to forecast the number of COVID-19 hospital admis-92

sions during the target week {t+k, t+k+1, . . . , t+k+6}. In our analysis,93

we used the following sets k = {0, 7, 14, 21, 28} and p = {7, 14, 21, 28, 35}.94

We did not consider forecasting horizons beyond five weeks as transmission95

dynamics – and the many factors that influence them – are likely to shift96

rapidly within that period (Holmdahl and Buckee, 2020).97
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p: 7 p: 14
k: 0

k: 7
k: 14

k: 21
k: 28

t−7t−14 t t+7 t+14 t+21 t+28 t+35 t−7t−14 t t+7 t+14 t+21 t+28 t+35

input forecast

Figure 1: Forecasting setups. The forecasting horizon k corresponds to the gap between
the last day of observed data and the start of the target week. The lookback window p is
the number of past days of data included in the model. Day t corresponds to the start of
a testing period.

2.2. Electronic health records data98

We obtained individual-level electronic health records (EHR) from the In-99

sel Gruppe hospital network (inselgruppe.ch) in the canton of Bern, Switzer-100

land. During the study period, this hospital network comprised Bern Univer-101

sity Hospital, which is one of the five first-level university general hospitals of102

Switzerland, as well as five other hospitals (Aarberg, Belp, Münsingen, Rig-103

gisberg and Tiefenau) that are second-level general hospitals (FOPH, Federal104

Office of Public Health, 2023). In 2023, about 57,000 inpatients and 900,000105

outpatients were treated at Insel Gruppe hospitals (Inselgruppe, 2023). The106

full dataset covers the period from 1 January 2014 to 30 June 2023. It con-107

tains personal information about patients (e.g., age and sex), details of their108

hospital stay (e.g., dates of admission and discharge, hospital ward), as well109

as various clinical and laboratory measurements (e.g., body temperature,110

blood pressure, C-reactive protein [CRP] concentration). In addition, diag-111

noses of inpatients were recorded using ICD10 codes (WHO, 2019). These112

codes were assigned after discharge by trained medical coders based on the113

clinical documentation – including medical doctors’ notes, laboratory results,114

and imaging reports. This process is primarily done for administrative and115
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financial purposes, but can be leveraged for epidemiological monitoring (De-116

mont et al.).117

2.3. Wastewater data118

In addition to EHR, we included measurements of the concentration of119

SARS-CoV-2 RNA in wastewater. We used wastewater samples collected120

daily at the Sensetal Laupen treatment plant between 16 November 2021121

and 30 June 2023 (partial study period) as part of a wastewater surveillance122

program coordinated by the Swiss Federal Institute of Aquatic Science and123

Technology (Eawag) and the Swiss Federal Office of Public Health (FOPH)124

(Eawag, 2021). As process control identified a possible underestimation by125

approximately 30% of the SARS-CoV-2 viral load in wastewater during sum-126

mer 2022, there is a five-week interruption in the data between 13 July and127

16 August 2022. This plant covers approximately 62,000 people living in an128

area west of the city of Bern, overlapping with the of the catchment area129

of the Insel Gruppe hospital network. Samples were stored on-site at 4oC130

and transported in batches to a laboratory for concentration, nucleic acid ex-131

traction, and quantification using qPCR. Further details on the wastewater132

sample laboratory procedures are available elsewhere (Huisman et al.).133

2.4. Data processing134

These raw data were processed to create 25 daily time series (Figure 2)135

in three steps. First, we identified COVID-19-related hospital admissions136

using the ICD10 code U07.1 (“COVID-19, virus identified ” WHO (2019))137

and created daily time series. We then smoothed this time series using a138

seven-day moving sum to reduce day to day fluctuations and focus on the139

actual trend of the time series. The entry at day t of the smoothed daily140

time series corresponds to the total number of COVID-19-related hospital141

admissions during days t to t + 6. This time series was used as the target142

variable in all models. Furthermore, we stratified COVID-19 hospital admis-143

sions into five age groups: Ages ≤ 4, 5 − 14, 15 − 29, 30 − 64 and ≥ 65144

years. Second, we created several other daily time series to be used as fea-145

tures in the models. These included the number of patients seeking care at146

the emergency department of Bern University Hospital, from both patients147

that were admitted to another hospital ward afterwards as well as patients148

discharged directly. Next, we identified the daily number of hospital admis-149

sions including a diagnosis belonging to one of five ICD10 chapters (R, I, E,150

J or Z), belonging to one of five ICD10 categories (E87, J12, J96, I10, N18)151
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or including one of five specific ICD10 codes (J12.8, I10.90, J96.00, Z22.8, or152

B33.8) (details about each code are available in Table 1). These chapters,153

categories and codes were selected on the basis of the frequency with which154

they appear together with the ICD10 code U07.1 in patients’ diagnoses. We155

also determined the daily number of inpatients admitted to hospital with156

fever (≥ 38.5 ◦C) and the daily number of inpatients admitted to hospital157

with a high CRP concentration (≥ 50mg/l). Third, we processed SARS-158

CoV-2 wastewater concentration data by 1) normalizing measurement using159

the flow of wastewater on the sampling day as in common practice (Huisman160

et al.), and 2) filling missing values using linear interpolation. Note that161

wastewater data were only available for a shorter time period, referred to as162

the partial study period in the following. From these 25 times series, we built163

9 feature sets for the full study period referred to by letters A to I (without164

wastewater) and 3 additional feature sets for only the partial study period165

referred to by letters J to L (with wastewater) (Tables 2 and 3).166

2.5. Models167

We applied several supervised machine learning models, each based on168

a different algorithm, to forecast COVID-19 hospital admissions. We se-169

lected last observation carried forward (LOCF) to serve as the baseline for170

performance comparison. Four models were evaluated : (1) a simple lin-171

ear regression (LR) model (using base R lm function), (2) a recurrent neu-172

ral network (RNN) (using Python library Keras (Chollet et al., 2015)), 3)173

a long short-term memory (LSTM) neural network model (Hochreiter and174

Schmidhuber, 1997) (using Python library Keras (Chollet et al., 2015)), and175

4) a gradient boosting model (XGBoost) (XGBoost community, 2025) (us-176

ing R package xgboost (Chen et al., 2024)). For both RNN and LSTM, we177

used a grid-search strategy to optimize the architecture of the network, the178

activation function and several hyperparameters (144 combinations each).179

For XGBoost, we evaluated 864 combinations of hyperparameters, including180

maximal tree depth. In all cases, the optimization of hyperparameters was181

based on the root mean square error (RMSE) between forecasts and obser-182

vations in the test set. A complete list of all hyperparameters for all models183

is included in Supplementary Table S1 of Appendix A. Model forecasts of184

COVID-19 hospital admissions were directly taken as forecasts in the case185

of XGBoost, while for the RNN and LSTM models forecasts were averaged186

over 50 independent runs (i.e., the forecasts correspond to an ensemble mean187
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taken sample-wise across 50 independent runs of the same model with differ-188

ent random seeds).189

2.6. Evaluation of model performance190

We used a summary score based on RMSE to evaluate the predictive per-191

formance of the different models to forecast COVID-19 hospital admissions in192

comparison to the baseline model LOCF across a range of experimental con-193

ditions. For a collection of forecasts, we first determined for each the RMSE194

between forecast and observed values in the respective test set. Second, we195

divided the obtained number by the RMSE resulting from the forecast of the196

baseline model LOCF in the same conditions. Finally, we aggregated these197

ratios into a single number by computing their geometric mean. We included198

a more formal definition of the summary score in Chapter 1.5 of Appendix A.199

This metric was computed for every combination of model and feature set,200

separately for the full (without wastewater) and the partial study period201

(with wastewater). As an additional metric for these collections of forecasts,202

we computed the percentage of forecasts that achieved a lower RMSE than203

the forecast of the baseline model LOCF with the same forecasting horizon k.204

We also computed the summary score within additional levels of stratification205

(e.g., for each combination of k and p) to identify which models performed206

best across different conditions. The summary score provided a clear and in-207

terpretable measure of performance: values below 1 indicate that on average208

the model forecasts considered are more accurate than the forecasts of the209

baseline model LOCF, while values above 1 suggest inferior performance.210

2.7. Data and code availability211

All code written in R and Python as well as some data and results files212

are publicly available in the GitHub repository (github.com/mwohlfender/213

hospital_admission_forecasting). Due to data protection regulations we can214

not make the full hospital dataset publicly available, but only in aggregated215

form.216

3. Results217

Between 25 February 2020 and 30 June 2023, we identified 6, 038 COVID-218

19-related inpatient admissions, i.e. hospital stays of at least one night with219

ICD10 code U07.1, in 6 hospitals in the canton of Bern, Switzerland (Table 1220

and Figure 2). 389 patients (6.4%) were 0 − 4, 108 patients (1.8%) 5 −221
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14, 220 patients (3.6%) 15 − 29, 1840 patients (30.5%) 30 − 64 and 3481222

patients (57.7%) were at least 65 years old. 527 of 717 COVID-19-related223

inpatient admissions of patients below the age of 30 occurred between 1224

January 2022 and 30 June 2023. The peaks in the number of visits at the225

emergency ward of Bern University Hospital in mid-march 2020 and in late226

October 2020 reflect rapid increases in COVID-19 cases in Switzerland. The227

Omicron variant did not lead to a distinct increase of the number of patients228

seeking care at the emergency ward of Bern in December 2022 or January229

2023. In autumn 2020, the trend in COVID-19-related hospital admissions230

coincided with that of hospital admissions with ICD10 codes J12.8 (“Other231

viral pneumonia”) and B33.8 (“Other specified viral diseases”). A similar232

pattern was observed in the first half of 2022 with ICD10 code Z22.8 (“Carrier233

of other infectious diseases”). The wastewater data showed generally similar234

trends as the COVID-19-related hospital admissions time series.235
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Table 1: Summary characteristics of model variables. Abbreviation, definition and
use in feature sets of all input variables extracted from electronic health records (EHR)
and wastewater data. Sum, mean, minimum and maximum are taken across all days of
the full study period for the EHR data and across all days of the partial study period for
the wastewater data. The unit of the variables extracted from EHR data is the number of
new hospital admissions fulfilling a certain criterion per day. The unit of the viral load in
wastewater samples is the number of SARS-CoV-2 RNA copies per 100, 000 people in the
collection area and day.

11
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Admissions

Age 0−4

Age 5−14

Age 15−29

Age 30−64

Age 65+

Emergency

Fever

Wastewater

CRP

ICD10 J12.8

ICD10 I10.90

ICD10 J96.00

ICD10 Z22.8

ICD10 B33.8

ICD10 E87

ICD10 J12

ICD10 J96

ICD10 I10

ICD10 N18

ICD10 R

ICD10 I

ICD10 E

ICD10 J

ICD10 Z

Jan 
2020

Apr Jul Oct Jan 
2021

Apr Jul Oct Jan 
2022

Apr Jul Oct Jan 
2023

Apr Jul

COVID−19−related hospital admissions Further hospital data External data

Figure 2: Temporal profile of model variables. Variables are extracted from electronic
health records and wastewater data. All time series are normalized and on a daily level.
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We combined the outputs of models with varying forecasting horizons236

to generate forecasts of the weekly number of COVID-19-related hospital237

admissions up to five weeks ahead. Examples of such forecasts are presented238

in Figure 3. We found that no single combination of model and feature set239

consistently produced the most accurate forecasts. The precision of forecasts,240

as measured by the RMSE between forecasts and observations in the test241

set, varied substantially across time periods, models, feature sets, lookback242

windows and forecasting horizons. Overall, forecast precision improved as243

more data became available for model training. The largest discrepancies244

between forecasts and observed values were observed during periods with245

rapid increases of COVID-19-related hospital admissions.246

0

20

40

60

19/08/2022 09/09/2022 07/10/2022 04/11/2022 02/12/2022 30/12/2022 27/01/2023 17/02/2023

Observation Last value observed Forecast

Figure 3: Examples of forecasts of weekly COVID-19-related hospital admissions
to three weeks ahead during autumn 2022. Empty dots correspond to the number of
COVID-19-related hospital admissions in the next seven days. For six dates set at regular
intervals of four weeks, forecasts are generated using XGBoost for each of the following
three weeks, based on COVID-19-related hospital admissions of the last 28 days.

Overall, all models except LR outperformed baseline when trained exclu-247

sively on counts of past COVID-19-related hospital admissions (feature set248

A), as assessed by both the summary score and the proportion of forecasts249

with lower RMSE than baseline (Table 2). The reductions in summary score250
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were relatively modest (0.91 for RNN, 0.90 for LSTM and 0.88 for XGBoost),251

with XGBoost achieving the lower summary score and the most consistent252

performance across all combinations of lookback window, forecasting hori-253

zon, and train-test split (outperforming baseline in 76% of cases). With the254

exception of XGBoost, which maintained stable performance, all models per-255

formed worse on average on the partial study period compared to the full256

study period (Table 3). This decline in performance was even more pro-257

nounced for LR and LSTM model.258

Including additional features beyond past COVID-19-related hospital ad-259

missions did not lead to any substantial improvement in the average summary260

score for any model on the full study period. For all feature sets except the261

number of COVID-19-related hospital admissions combined with the num-262

ber of patients seeking care at the emergency ward (feature set C), XGBoost263

consistently outperformed both the baseline and all other models on the full264

study period (Table 2). RNN and LSTM performed similarly to baseline, only265

showing noticeable improvement when trained on the number of COVID-19-266

related hospital admissions alone (feature set A) or in combination with the267

number of patients seeking care at the emergency ward (feature set C). There268

was no feature set that enabled LR to produce more accurate forecasts than269

the baseline. The performance of LR was particularly poor when multiple270

features were added.271

Adding measurements of SARS-CoV-2 viral load in wastewater to the272

feature set led to noticeable improvement of the performance of XGBoost on273

the partial study period (summary score 0.73 and improvement over baseline274

in 97% of the cases, Table 3). Using other feature sets, XGBoost led to275

slightly more precise forecasts on the partial study compared to the full276

study period. On the contrary, the other models generally performed worse277

on the partial study period than on the full study period. This drop in278

accuracy could be substantial, for instance for forecasts generated with LSTM279

using past COVID-19-related hospital admissions combined with counts of280

inpatients with high CRP value (feature set H, average summary score of281

1.51 compared to 0.96).282
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Table 2: Summary of model performance for the full study period (25 February
2020 to 30 June 2023). For each model and feature set, the summary score was
computed as the geometric mean of the ratios of the root mean square error (RMSE) over
the baseline RMSE across all combinations of forecasting horizon k, lookback window p,
and train-test split. The proportion of forecasts where the RMSE is lower than the baseline
is shown in parentheses.
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Table 3: Summary of model performance for the partial study period (16
November 2021 to 30 June 2023). For each model and feature set, the summary
score was computed as the geometric mean of the ratios of the root mean square error
(RMSE) over the baseline RMSE across all combinations of forecasting horizon k, look-
back window p, and train-test split. The proportion of forecasts where the RMSE is lower
than the baseline is shown in parentheses.

Forecasting performance was highly dependent on forecasting horizon k283

and lookback window p, with the ranking of models and feature sets varying284

across the values chosen for k and p. At least one model outperformed the285

baseline for all combinations of k and p, in both the full and the partial286

study periods (Figure 4A). XGBoost was the best-performing model for 12287

out of 25 combinations of k and p for the full study period (summary scores288

ranging from 0.67 to 0.84) and for 22 out of 25 combinations of k and p during289

the partial study period (summary scores ranging from 0.53 to 0.89). For290

smaller values of k and p, the RNN and LSTM models outperformed the other291

models, particularly for the full study period (summary scores ranging from292

0.72 to 0.95). As the forecasting horizon and lookback window increased,293

the XGBoost model more frequently achieved the best performance. This294

pattern was more pronounced for the partial study period than for the full295

study period.296

The optimal feature set also varied according to experimental conditions.297
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For 20 out of 25 combinations of k and p during the full study period and298

all 25 combinations of k and p during the partial study period, best per-299

formance was obtained using a feature set that included additional features300

besides COVID-19-related hospital admissions (Figure 4B). For the full study301

period, and for longer horizons for the partial study period, past COVID-19-302

related hospital admissions combined with counts of patients admitted with303

fever (feature set G) most frequently achieved the best summary score (sum-304

mary score ranging from 0.53 to 0.91). Using counts of patients admitted305

with high CRP (feature set H) and counts of patients seeking care at the306

emergency ward (feature set C) were also sometimes selected as achieving307

best performance, especially for longer forecast horizons (three to five weeks308

ahead). The inclusion of viral load measurements in wastewater samples led309

to the best results at short forecast horizons (up to three weeks ahead) for310

the partial study period (summary score ranging from 0.71 to 0.88).311
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A (COVID−19−related 
hospital admissions)

C (A + emergency)
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G (A + fever)

H (A + CRP)

J (Wastewater)
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L (A + emergency + ICD10 codes + 
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Figure 4: Best-performing model and feature set for each combination of fore-
casting horizon k and lookback window p. A: Model achieving the lowest root mean
squared error (RMSE) during the full and the partial study period. B: Feature set achiev-
ing lowest RMSE during the full and the partial study period. Numbers indicate the
average summary score, computed as the geometric mean of the ratios of RMSE over the
baseline RMSE across all train-test splits.

4. Discussion312

In this study, we systematically evaluated and compared the ability of var-313

ious machine learning algorithms to forecast the number of weekly COVID-314

19 hospital admissions up to five weeks ahead, using different combinations315

of variables extracted from EHR from six hospitals in the region of Bern,316
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Switzerland, as well measurements of SARS-CoV-2 viral load in wastewater317

samples. Across all examined forecasting horizons, we were able to gener-318

ate forecasts that consistently outperformed the baseline model of LOCF,319

with greater improvements observed for longer forecasting horizons. Overall,320

our findings confirm that EHR hold considerable potential for improving the321

forecasting of infectious disease dynamics.322

We found that gradient boosting using the XGBoost algorithm outper-323

formed other models on average across all combinations of forecasting horizon324

k and lookback window p. This is somewhat surprising as XGBoost was not325

inherently built for time series forecasting. Still, XGBoost performed better326

than linear regression and neural networks (RNN and LSTM), particularly327

for longer forecasting horizons. These findings may be explained by the328

discrete tree-based approach of XGBoost, leading to a good handling of non-329

linearities in addition to the reduced risk of overfitting (Park and Ho, 2021).330

Moreover, XGBoost may have an advantage because of the relative scarcity331

of data. As we work with daily time series, our models never get a training332

set containing more than about 1, 200 data points, which was further reduced333

when using longer lookback windows or focusing on the partial study period.334

In these situations, forecasts generated with linear regression and neural net-335

work were prone to perform considerably worse than LOCF, while XGBoost336

remained mostly adequate. This feature makes XGBoost particularly ap-337

pealing in the early stages of epidemics and for emerging infectious diseases338

lacking historical data.339

With regards to variables relevant for forecasting COVID-19-related hos-340

pital admissions, our findings indicate that relying solely on past admission341

counts is suboptimal. Complementing these data with additional variables342

available in EHR such as the number of patients admitted with fever, with el-343

evated CRP or presenting to emergency care improved forecast performance,344

particularly at longer forecasting horizons (three to five weeks ahead). Be-345

sides EHR, our results confirm the transformative potential of incorporat-346

ing viral load measurements in wastewater in infectious disease forecast-347

ing (Rankin et al.). Forecasts based on recent wastewater data demonstrated348

substantially improved performance for shorter horizons (up to three weeks349

ahead), while EHR-based variables such as fever-related admissions retained350

a performance advantage at longer horizons (four and five weeks ahead). This351

pattern likely reflects the temporal lag between infection incidence (captured352

by wastewater surveillance via fecal shedding) and subsequent hospital ad-353

missions, which has been estimated to range between 10 and 14 days (Hegazy354
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et al., 2022).355

Other studies have used similar approaches for hospital admission fore-356

casting, and found that combining hospital admissions data on the level of a357

single hospital or aggregated on a regional level with additional health data358

(e.g., occupancy of emergency units or use of ambulance services) or external359

data (e.g., mobility or weather data) lead to more accurate forecasts (Ferté360

et al., 2022; Zhang et al., 2022; Klein et al., 2023). Our results are aligned361

with their findings, but a quantitative comparison of the precision of the362

obtained forecasts between studies is difficult due to different available data,363

study periods and evaluation metrics.364

The main strength of our work lies in the breadth and thoroughness of365

the systematic comparison of different models and combinations of features,366

which leads to a proof-of-concept that routinely collected EHR can indeed367

provide a solid data basis for an infectious disease forecasting system. This368

represents a step forward in the development of infectious disease monitoring369

and forecasting systems relying on data that has not been collected specifi-370

cally for research purposes. Given that the data can be accessed with little371

time delays, forecasting could be conducted continuously and provide reli-372

able estimates of quantities of interest such as new COVID-19-related hos-373

pital admissions without depending on time-consuming and expensive data374

collection.375

Our study comes with several limitations. First, the generalizability of376

our findings beyond the Insel Gruppe hospital network in the region of Bern377

remains uncertain. Differences in EHR structures, conventions and formats378

could make it difficult to replicate our study in other settings. We refrained379

from requesting access to EHR from other Swiss university hospitals. Sec-380

ond, we carried out a purely retrospective analysis, and did not implement381

our forecasting framework in a real-time operational context. Real-time de-382

ployment would require additional development of data pipelines and in-383

frastructure. One key obstacle, which we could not influence, was the time384

lag between hospital admission and the encoding of diagnoses using ICD10385

codes, which can occur several weeks after discharge. Reducing these delays386

is essential for enabling the practical application of forecasting approaches387

such as ours, although as we showed the best-performing features (fever,388

CRP and emergency ward) do not rely on ICD-10 encoding and are available389

immediately. Third, from a technical perspective, we did not use a distinct390

validation set to tune model hyperparameters, instead doing this directly on391

the testing set. This decision was made in light of limited data availability,392
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as reserving additional data for validation would have reduced the training393

set. Similarly, we also did not estimate the uncertainty of the model fore-394

casts. While techniques such as conformal prediction were considered, their395

application would have required additional data splitting, further reducing396

the training set. Finally, as with many forecasting approaches, we did not397

account for changes in transmission dynamics, for example due to shifts in398

population behavior, the emergence of new variants or increases in the immu-399

nity level due to vaccination. Future work is needed to develop forecasting400

methods that can incorporate a broader range of dynamic data sources.401

The vast amount of routinely collected medical data remains underuti-402

lized for infectious disease forecasting. Our findings demonstrate that such403

data, when properly harnessed with modern machine learning approaches,404

can substantially enhance the accuracy of short-term hospital admission fore-405

casts. Such forecasts are especially valuable for informing public health pol-406

icy, enabling healthcare systems to anticipate surges in demand and allocate407

resources accordingly. As data infrastructures continue to expand, with more408

and more hospital data becoming available in standardized format and with409

decreasing delays, the integration of routine clinical and surveillance data410

into real-time forecasting systems will become more feasible. This paves the411

way for highly-efficient forecasting tools that can support timely and data-412

driven responses to emerging infectious disease threats, strengthening overall413

pandemic preparedness.414
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