
Delivering MongoDB-as-a-Service: Top
10 Considerations
A MongoDB Whitepaper
November 2017

A MongoDB White Paper

Table of Contents
1Introduction

1Step 1: Identify Common Workload Requirements

3Step 2: Hardware & OS Selection

5Step 3: Virtualization Strategy

5Step 4: Enabling Multi-Tenant Services

8Step 5: Enforcing Security Isolation between Tenants

Step 6: Meeting Service Level Agreement (SLA)
9Requirements

12Step 7: Managing the MongoDB Service

15Step 8: Cost Accounting & Chargeback

15Step 9: Define the Implementation Plan

16Step 10: Production-Grade DBaaS

17MongoDB Atlas: Database as a Service For MongoDB

17MongoDB Stitch: Backend as a Service

18Conclusion

18Resources

Introduction

With several hundred thousand production deployments

and customers in more than 50% of Fortune 100

companies, MongoDB is the industry’s fastest growing

database. An increasing number of organizations are using

MongoDB Enterprise Advanced to deliver a

Database-as-a-Service (DBaaS), standardizing the way in

which internal business units and project teams consume

MongoDB, thereby improving:

• Business AgilityBusiness Agility.. Making it simple to rapidly spin up

new development environments that can be quickly

migrated to production deployments when the project

goes live

• Operational EfficiencyOperational Efficiency.. Re-using standard

infrastructure, processes, tools, and best practices

across multiple projects

• Business Unit AccountBusiness Unit Accountabilityability.. Billing project teams

for the resources they consume

• Corporate Governance.Corporate Governance. Enforcing centralized controls

for Quality of Service (QoS), security, disaster recovery,

and more

Organizations such as a top investment bank, The Royal

Bank of Scotland, and the US Department of Veteran

Affairs use MongoDB as their Database-as-a-Service

(DBaaS) platform. Building upon the success these and

others have had, this whitepaper provides the top 10

considerations IT groups need to make in building their

own MongoDB-as-a-Service, whether delivered from

private clouds running in internal data centers or from any

of the leading public cloud platforms.

This paper is focused on those organizations building their

own private MongoDB-as-a-Service, but MongoDB also

offers MongoDB Atlas as a ready built service. Some of the

considerations covered in the paper, such as identifying

common workloads for capacity planning purposes, and

scaling with sharding also apply to MongoDB Atlas.

Step 1: Identify Common
Workload Requirements

By engaging with project teams, both those running live

applications and those planning for release within the next

1

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/presentations/business-track-building-private-cloud-empower-business-goldman-sachs
https://www.mongodb.com/presentations/mongodb-days-uk-building-an-enterprise-data-fabric-at-royal-bank-of-scotland-with-mongodb
https://www.mongodb.com/presentations/mongodb-days-uk-building-an-enterprise-data-fabric-at-royal-bank-of-scotland-with-mongodb
http://www.mongodb.com/blog/post/us-department-veteran-affairs-goes-wire-frame-production-app-weeks-not-months-or-years
http://www.mongodb.com/blog/post/us-department-veteran-affairs-goes-wire-frame-production-app-weeks-not-months-or-years
https://www.mongodb.com/cloud

CurrCurrentent PrProjected (1ojected (12 months)2 months)

Database Size (GB, TB, PB)

Average Document Size (KB, MB)

Data Retention Period (Days, Months, Years)

Write Operations per Day

Query Operations per Day

Query Profile (% of operations using primary key,
secondary indexes, aggregations, MapReduce jobs)

Average Number of Documents Returned per Query

TTable 1:able 1: Sizing Database Load

six months, the IT group can capture current and

anticipated database usage, architecture design, and

operational policies. This will ensure the IT group designs a

shared service delivery infrastructure that will meet both

the short and medium term needs of its internal customers.

The process will also identify candidates for an initial pilot

of the service before it is made generally available to

project teams across the organization.

Key stakeholders for consultation in this stage include the

following for each project:

• Business owners

• Architects

• Developers

• DBAs

• Operations staff

• Network and storage engineers

• Corporate security and compliance representatives

Database Usage

The first stage is to document current and projected

MongoDB usage for each project. Key statistics to capture

are shown in Table 1.

Architecture Design

A profile of the existing or planned infrastructure will help

size platform requirements and cluster configurations. Key

data to capture is shown in Table 2.

Operational Policies

The final stage of the discovery process is to capture

requirements that dictate how the application is run in

production, including:

• Performance and availability SLAs (Service Level

Agreements)

• Provisioning, upgrade, and change control processes

• Data archive, backup, and restore policies

• Database management, and monitoring

• Security requirements (e.g., access control, encryption,

and auditing)

Key Takeaways

While not exhaustive, the checklists above will help to

profile MongoDB usage and inform a design that meets

the immediate needs of internal customers. It is also

important to remember that with its loosely-coupled,

flexible architecture the IT group is not locked in to a rigid

MongoDB design. It can be rapidly adapted and

re-provisioned to meet new application requirements as

they evolve in the future.

2

CurrCurrentent PrProjected (1ojected (12 months)2 months)

MongoDB Version and Drivers Used

Operating System & Version

Physical Host or Instance Specification (Number of
processors and cores, RAM)

Internal Storage Specification (Number and Capacity of
SSDs & HDDs, RAID Level)

External Storage Specification (SAN, NAS, Provisioned
Bandwidth). (Note, local storage is preferred. See
“Hardware Selection" for more information)

Number of MongoDB Instances per Physical Host

Number of Replica Set Members

Number of Shards

Network Specification (MB/s, GB/s)

TTable 2:able 2: Infrastructure and Design

Step 2: Hardware & OS
Selection

While the analysis from Step 1 can provide guidance based

on the current hardware platforms in use, it is important to

recognize that different applications can drive the selection

of different hardware configurations. To achieve the

efficiency benefits promised by a shared

MongoDB-as-a-Service infrastructure, the IT group needs

to define a standard set of reusable hardware building

blocks that will satisfy the broadest set of performance and

availability requirements across a range of applications.

Making hardware selection much simpler, MongoDB is

specifically designed for commodity hardware and has few

hardware requirements or limitations. MongoDB will

generally take advantage of more RAM, faster CPU clock

speeds, and local storage. MongoDB has extensive

experience helping customers to select the appropriate

hardware and tune their configurations. By building your

Database-as-a-Service on MongoDB Enterprise Advanced,

our consultants can work with your IT group to validate and

optimize MongoDB systems.

RAM & CPU

MongoDB makes extensive use of RAM to increase

performance. Ideally the database’s working set (i.e. the

“hot" subset of data and indexes that are accessed most

frequently by the application) fit into RAM. As a general

rule of thumb, the more RAM, the better the performance.

Therefore, hardware budget should be prioritized towards

memory-rich systems. RAM footprints of 128GB to 512GB

will typically provide the best general purpose platform. If

the working set will exceed available memory, then

MongoDB can be automatically distributed (sharded)

across multiple nodes. Sharding is discussed later in the

Guide.

MongoDB will deliver better performance on faster CPUs.

The MongoDB WiredTiger storage engine is better able to

saturate multi-core processor resources than the MMAPv1

storage engine, as are the Encrypted and In-Memory

storage engines (based on WiredTiger). Dual socket

servers equipped with modern 64-bit Intel or AMD

processors make great general purpose platforms.

3

Storage

MongoDB does not require shared storage (e.g. Storage

Area Networks), and is instead optimized for locally

attached storage. Data access patterns in MongoDB do

not have sequential properties, and as a result applications

may experience substantial performance gains by using

SSDs, especially where workloads require random updates

to very large working sets. While data files benefit from

SSDs, MongoDB’s journal files do exhibit high sequential

write profiles and are therefore good candidates for fast

local hard disk drives.

When planning storage provision, it is important to consider

storage engine options. The WiredTiger and Encrypted

storage engines provide several compression options,

making them up to 80% more storage-efficient than the

MMAPv1 storage engine.

Most MongoDB deployments should use RAID-10 storage.

RAID-5 and RAID-6 do not provide sufficient performance.

RAID-0 provides good write performance, but limited read

performance and insufficient fault tolerance.

If shared storage is the only option available, it is

recommended to use explicitly provisioned block storage,

such as Amazon Web Services (AWS) Provisioned IOPS

(PIOPS) or equivalent. This type of implementation

provides a balance between decoupled, re-assignable

storage and guaranteed throughput. Block storage shared

by multiple applications lacks the assured Quality of

Service (QoS) guarantees, which can impact performance.

Given generally low random-access performance, shared

NAS filesystem storage is not recommended for MongoDB

deployments.

When evaluating deployment on a SAN, it is important to

conduct thorough stress testing to characterize the IOPS

needed to sustain required performance levels both now

and in the future. In addition to provisioning dedicated

IOPS, there are some other best practices that should be

considered:

• Locate the MongoDB journal on a separate fast local

drive.

• MongoDB data files should be provisioned to separate

SAN spindles.

• Avoid over-subscription by isolating the MongoDB

workload from others that share the same physical SAN

and networking infrastructure.

• Without proper redundancy, SANs can present a single

point of failure. If all members of a MongoDB replica set

are co-located on the same SAN, ensure mechanisms

exist for fast SAN recovery.

Operating System

MongoDB Enterprise Advanced is certified for multiple

operating systems:

• Four Linux distributions: Red Hat Enterprise Linux,

CentOS, Ubuntu, SuSE, and Amazon Linux

• Windows 7/Windows Server 2008 R2 or later

• macOS

In choosing an operating system, enterprise mandates

must be considered first. Where the enterprise supports

multiple options, Linux is preferred.

Key Takeaways

When looking to define standard hardware building blocks

for MongoDB, start with these general recommendations:

• The more RAM the better

• Select fast CPUs

• Use local storage, preferably SSDs, or explicitly

provisioned shared storage such as AWS PIOPS or

equivalent (use SSDs in the shared storage, if available)

• Use an operating system certified with MongoDB

Enterprise Advanced

A good choice of server platform would be a dual socket

Intel or AMD-based server platform with local SSDs. If

deploying on a public cloud, AWS r3.4xlarge, or AWS

r3.8xlarge with EBS Provisioned IOPS (or equivalent from

other vendors) is preferred.

You can learn more about hardware and OS selection by

downloading the MongoDB Operations Best Practices

guide.

4

https://docs.mongodb.com/manual/administration/production-notes/
http://info.mongodb.com/rs/mongodb/images/MongoDB_Operations_Best_Practices.pdf
http://info.mongodb.com/rs/mongodb/images/MongoDB_Operations_Best_Practices.pdf

Step 3: Virtualization Strategy

While not a prerequisite, building an infrastructure to

deliver MongoDB-as-a-Service enables the IT group to

utilize virtualization technologies. In efforts to drive up

system utilization and enhance operational efficiency by

eliminating “one application per server", most enterprises

have already standardized on a certified set of virtualization

technologies. MongoDB Enterprise Advanced is supported

on all mainstream virtualized public and private cloud

infrastructure, including:

• Hypervisor virtualization such as Xen, KVM, VMware

vCloud Suite and vSphere platform, Oracle VirtualBox,

OpenVZ and Microsoft Hyper-V

• Container virtualization, such as Linux Containers (LXC)

and Docker

• Private and public cloud platforms based on the

virtualization technologies described above, including

OpenStack, Cloud Foundry and OpenShift, and public

cloud offerings such as AWS, Google Compute Engine,

Rackspace, and Microsoft Azure

• Non-virtualized public cloud offerings such as IBM’s

SoftLayer

With multiple VM (Virtual Machine) images or containers

running MongoDB on a single physical host, consideration

should be given to ensuring adequate resources are

allocated to each instance. Avoid over-provisioning

resources such as RAM. Most importantly, ensure that

multiple members of a replica set are not sharing the same

underlying hardware, as this will create a single point of

failure.

Key Takeaways

MongoDB supports all mainstream virtualization platforms.

As we will see below, the choice of virtualization technology

can impact the strategy for database multi-tenancy within a

single physical MongoDB cluster.

Step 4: Enabling Multi-Tenant
Services

There are multiple approaches to building a multi-tenant

MongoDB service on top of the virtualization technologies

discussed in Step 3. The appropriate choice will depend on

specific requirements for security, workload isolation, and

performance. The following section focuses on the two

latter criteria, while security is discussed in Step 5.

Hypervisor-Based Virtual Machines

Each physical server is partitioned into multiple VMs

running a full operating system image and MongoDB

(mongod) process. System resources such as CPU, RAM,

and disk IO can be dedicated to each VM, preventing one

VM from impacting the performance of others.

While this approach does not allow the density of instances

seen with lighter-weight container-based virtualization, it

does enable stronger isolation between each instance. It is

also a well tested, mature approach used by technologies

such as VMware vSphere and services such as AWS EC2.

A key consideration in deploying enterprise hypervisor

technologies is to avoid over-provisioning at any level of

CPU cores, RAM, network, or storage. These technologies

assume that most hypervisor client systems will rarely use

their allotted resources. That assumption is invalid for an

operational database such as MongoDB. In particular,

memory ballooning should be avoided or disabled, as it will

conflict directly with MongoDB’s approach to using RAM.

Containers

Using Linux’s LXC containers and cgroups, a single

physical host and Linux kernel can be partitioned into

multiple isolated user-level containers, each running a

single MongoDB process, assigned with unique user

credentials for access control. As with VMs, system

resources can be dedicated to each container to prevent

oversubscription by competing workloads.

There are several advantages to using containers versus

VMs:

5

FigurFigure 1:e 1: MongoDB Multi-Tenancy with Virtualization – Containers vs. VMs

• PacPack mork more inste instances per physicances per physical hostal host as there is

less system overhead. Containers use one operating

system image shared between all VMs rather than each

VM carrying its own operating system

• FFaster to instaster to instantiateantiate a LXC or Docker container than it

is to boot a guest operating system in a VM

It is common to run containers within VMs (e.g., when using

Docker on Amazon EC2), providing a double level of

virtualization.

The disadvantage to container-based virtualization is that

there is less isolation between each container. A failure of

the underlying operating system will result in failures of all

the containers running on it.

More information on using MongoDB with Docker

containers can be found in Enabling Microservices:

Containers & Orchestration Explained.

Process Separation

An alternative approach is to run a MongoDB process for

each tenant in a single operating system image. This allows

for a high density of tenants, but with limited isolation there

can be contention for system resources between

processes. Linux cgroups can be used to constrain the use

of RAM, CPU cores, and disk and network IO by each

mongod process.

Logical DB Separation

Each tenant can be provisioned with a logical database (i.e.,

schema) in a shared MongoDB instance. While each tenant

can be configured with their own access credentials, this

approach affords the weakest level of isolation. Each

tenant will be sharing not only the same hardware, but also

6

https://www.mongodb.com/collateral/microservices-containers-and-orchestration-explained
https://www.mongodb.com/collateral/microservices-containers-and-orchestration-explained

FigurFigure 2:e 2: MongoDB Multi-Tenancy with Logical vs. Process Separation

the same database resources such as address space,

journal, and oplogs (used for replication).

As a result of this loosely coupled separation, one tenant

could completely saturate the system, starving other users

of resources. In addition, every tenant will be forced into

using the same cluster topology, as replication is

configured per MongoDB process, not per database.

MongoDB 3.6 enables operations teams to more easily

inspect, monitor, and control each user session running in

the database (across all logical databases). They can view,

group, and search user sessions across every node in the

cluster, and respond to performance issues in real time. For

example, if a user or developer error is causing runaway

queries, administrators now have the fine-grained

operational oversight to view and terminate that session by

removing all associated session state across a sharded

cluster in a single operation.

Key Takeaways

When designing for multi-tenancy on a shared resource

pool, the IT team must balance isolation, performance, and

security. Users have a range of options from dedicated

hardware -> VM -> container -> process -> logical

database that provide decreasing levels of isolation

between instances, but increasing density.

There is not a one-size-fits-all; and differing technologies

can be combined to manage applications at different

stages of their lifecycle and to accommodate specific SLAs

and usage patterns. MongoDB is sufficiently flexible to

support all of the approaches discussed above.

7

https://docs.mongodb.com/manual/reference/command/nav-sessions/

Step 5: Enforcing Security
Isolation between Multiple
Tenants

MongoDB Enterprise Advanced features extensive

capabilities to enforce security isolation between tenants.

Security is a dimension of service design that should be

defined early, though it may be implemented progressively

as the enterprise services mature. Details vary by

organization and must go hand-in-hand with multi-tenant

access to the cluster.

Authentication

MongoDB provides a variety of security management

capabilities and integrates with typical enterprise security

infrastructure, such as LDAP, Kerberos, and x509

certificates for the authentication of users, applications,

and other nodes within the cluster (i.e. shards and replica

set members). These capabilities may be applied at various

levels of granularity, from the entire shared infrastructure,

to individual clusters, databases, or collections, all the way

down to the level of individual, labelled fields within

documents (using field level redaction).

Authorization

A key enabler for multi-tenancy within a single cluster is

MongoDB’s user-defined roles, enabling administrators to

assign fine-grained privileges to users, or applications.

User privileges can be defined at both database and

collection-level granularity. Authorization privileges can be

based on the specific functionality users need in their roles,

or to reflect departmental structures. For example:

• Administrators may be assigned privileges that enable

them to create collections and indexes on a database,

while business unit developers are restricted to

document-level CRUD (Create, Read, Update, Delete)

operations on a single collection.

• Specific administrator roles may have service-wide

privileges to build replica sets and configure sharding,

while others are restricted to creating new users, or

inspecting logs.

• Within a multi-tenant environment, landlord developers

and administrators in the IT team can be assigned

permissions across multiple physical clusters and

databases, while tenant developers and administrators

in individual project teams can be granted a more

limited set of actions across the logical databases or

individual collections used by their application. This

functionality enables a clear separation of duties and

control.

For simplicity in account provisioning and maintenance,

predefined roles can be delegated across entire teams,

ensuring the enforcement of consistent policies across

specific functions within the organization.

MongoDB Enterprise Advanced offers authorization

integration with LDAP. This enables existing user privileges

stored in the LDAP server to be mapped to MongoDB

roles, without users having to be recreated in MongoDB

itself. When configured with an LDAP server for

authorization, MongoDB will allow user authentication via

LDAP, Active Directory, Kerberos, or X.509 without

requiring local user documents in the $external database.

When a user successfully authenticates, MongoDB will

perform a query against the LDAP server to retrieve all

groups the LDAP user is a member of, and will transform

those groups into their equivalent MongoDB roles.

Additionally, MongoDB offers read-only views for field-level

security as a critical building block for trusted systems.

MongoDB allows administrators to define non-materialized

views that expose only a subset of data from an underlying

collection. Permissions granted against the view are

specified separately from permissions granted to the

underlying collection(s). With redaction of data at the

document or field level, a single record can contain data

with multiple security levels accessible only to users with

explicit privileges. This avoids the complexity of separating

data across multiple databases, each with their own access

policies.

Auditing

For compliance reporting, security administrators can use

the MongoDB Enterprise Advanced's native audit log to

track track any operation taken against the database –

whether DML, DCL, or DDL.

8

Encryption

MongoDB data can be encrypted on the network and on

disk. Support for SSL allows clients to connect to

MongoDB over an encrypted channel. MongoDB supports

FIPS 140-2 encryption when run in FIPS Mode with a

FIPS validated Cryptographic module.

Data at rest can be protected using the Encrypted Storage

Engine, which provides native encryption, avoiding much of

the performance overhead of external encryption

mechanisms. This storage engine can optionally integrate

with a third party key management appliance via KMIP.

Key Takeaways

Definition of security policies should start at the outset of

the project, based on corporate compliance and privacy

directives.

Learn more about the security controls in MongoDB by

downloading the MongoDB Security Reference

Architecture.

Step 6: Meeting Service Level
Agreement (SLA) Requirements

A critical factor in adoption of the MongoDB service is the

platform’s ability to meet the SLA requirements of each

application. SLAs are most commonly defined in two

dimensions:

• Application uptime – often expressed as a percentage

of availability over time, for example 99.9% (system is

unavailable for no more than 8.76 hours per year),

99.99% (unavailability of 52.56 minutes per year), or

99.999% (5.26 minutes per year). The availability

percentage would typically include Mean Time to

Recover (MTTR) after a failure;

• Delivered performance in the 95th percentile,

expressed in operations per second and / or latency to

the client.

SLAs are also sometimes defined for speed of issue

resolution and the time to deliver new applications, though

both of these are beyond the scope of this document.

FigurFigure 3:e 3: Self-Healing MongoDB Replica Sets for High
Availability

Maintaining Service Continuity with
MongoDB Replica Sets

While development environments can be run on a single

instance of MongoDB, production applications should

always use MongoDB’s native replication to provide

resilience in the event of platform outages.

MongoDB maintains multiple copies of data in replica sets.

With fully automated failover and recovery, replica sets are

self-healing so it is unnecessary to manually intervene to

restore a system in the event of a failure. Replica sets also

enable operational flexibility by providing a way to perform

system maintenance (i.e., upgrading hardware and

software) while preserving service continuity.

A replica set consists of multiple database replicas. At any

given time, one member acts as the primary replica set

member and the other members act as secondary replica

set members. If the primary member suffers an outage (e.g.

as a result of power failure, hardware fault, network

partition) one of the secondary members is automatically

9

http://info.mongodb.com/rs/mongodb/images/MongoDB_Security_Architecture_WP.pdf
http://info.mongodb.com/rs/mongodb/images/MongoDB_Security_Architecture_WP.pdf
http://docs.mongodb.org/manual/core/replication-introduction/

FigurFigure 4:e 4: Active/Active Data Centers - Tolerates Failures of Servers, Racks & Data Center, plus Network Partitions

elected to primary and the client connections failover to

that new primary.

The number of replicas in a MongoDB replica set is

configurable, with a larger number of replica members

providing increased data durability and protection against

database downtime (e.g. in case of multiple machine

failures, rack failures, data center failures, or network

partitions). In MongodDB 3.0 and higher, replica sets can

contain up to 50 members. Replica set members can be

deployed in a single data center or across multiple data

centers in active-standby or active-active modes, providing

geographic resilience in the event of regional disasters. In

addition, MongoDB provides advanced options to control

data center awareness.

Read the MongoDB and Multi-Data Center Deployments

whitepaper to learn more about replication and geographic

awareness.

Deploying Replica Sets in a Shared
MongoDB Service

Depending on the SLAs, multiple applications can be

hosted on a single replica set, with workload isolation

enforced by the appropriate multi-tenancy strategy

discussed in Step 5.

The IT team then has the flexibility to separate the most

performance or availability-sensitive applications to their

own dedicated replica sets within the resource pool, while

still maintaining centralized control and management of the

service.

As a best practice replica set members should at the very

least run on separate physical servers, preferably in

separate racks and for highest resilience, across

regionally-separated data centers.

The number of replica set members should also be

carefully considered, ideally using a quantitative model of

empirically-based probabilities of the various failure levels

of different infrastructure components (i.e. VM, physical

server, rack, data center, and region). At a minimum, three

members should be deployed in each replica set, though in

less critical applications it is possible to use two replica set

members and an arbiter (note that in this model, the replica

set would be unable to serve writes if configured with a

majority write concern in the event of a failure of either of

the replica set members).

Database Scaling with MongoDB
Automatic Sharding

While performance-intensive applications can be moved to

their own dedicated replica sets, as the workload continues

to grow users should consider scaling out (sharding)

MongoDB if any of the following conditions are anticipated:

• RAM LimitRAM Limitation.ation. The size of the system’s active

working set plus indexes is expected to exceed the

capacity of the maximum amount of RAM in the system.

• Disk IDisk I/O Limit/O Limitation.ation. The system will have a large

amount of write activity, and the operating system will

not be able to write data fast enough to meet demand,

or I/O bandwidth will limit how fast the writes can be

flushed to disk.

10

http://www.mongodb.com/white-papers
http://www.mongodb.com/white-papers
http://docs.mongodb.org/manual/core/replica-set-arbiter/
http://docs.mongodb.org/manual/core/replica-set-write-concern/

FigurFigure 5:e 5: Sharding and replica sets – automatic sharding provides horizontal scalability; replica sets prevent downtime

• Storage LimitStorage Limitation.ation. The data set will grow to exceed

the storage capacity of a single node in the system.

Applications that meet these criteria, or that are likely to do

so in the future, should be designed for scaling out in

advance rather than waiting until they run out of capacity.

MongoDB provides horizontal scale out using a technique

called sharding, allowing MongoDB deployments to scale

beyond the hardware limitations of a single server.

Sharding distributes data across multiple physical partitions

called shards, and is transparent to applications. Shards

can be located within a single data center or distributed

across multiple data centers. As illustrated in Figure 5,

each shard is deployed in a replica set, to provide both

scalability and high availability to the MongoDB service.

MongoDB automatically balances the data in the cluster as

the data grows or the size of the cluster increases or

decreases. For more on sharding see the Sharding

Introduction.

Deploying Shards in a Shared MongoDB
Service

While sharding is automatic and transparent to the

application, careful consideration needs to be given to

selecting a shard key as this controls how the database is

partitioned and distributed across the hardware cluster.

Shard key selection can have a significant impact on the

performance of the database. The choice of shard key is

application-dependent, based on the database schema and

the way in which the application queries and writes data.

Unless MongoDB is servicing a single application

accessed by multiple tenants (i.e. Software-as-a-Service, or

SaaS) it is not appropriate to provision all applications to a

single sharded cluster. Instead, each application requiring

the additional scaling that sharding brings should be

deployed to its own sharded cluster within the shared

MongoDB resource pool. This approach ensures that each

application is scaled according to its workload patterns.

11

http://docs.mongodb.org/manual/core/sharding-introduction/
http://docs.mongodb.org/manual/core/sharding-introduction/

Review the documentation to learn more about shard key

selection.

Key Takeaways

Failure to meet SLAs will not only result in the MongoDB

service failing to gain traction within the organization, it can

also result in damage to the corporate brand, lost

customers, and even regulatory penalties.

• All production applications should use MongoDB’s

replica sets to avoid downtime that can result from

system failures.

• Busier or more critical apps can be provisioned to their

own dedicated replica sets to achieve higher

performance.

• When an application needs to scale beyond the capacity

of a single replica set master, the database can be

re-provisioned onto a sharded cluster.

Even though you may have some application databases

co-located on the same physical hardware and others

distributed to dedicated replica sets and sharded clusters,

you can still manage the overall MongoDB resource pool

as a single, shared service. This is discussed in the

following section.

Step 7: Managing the Service:
Provisioning, Monitoring, and
Disaster Recovery

Ops Manager is the simplest way to run MongoDB, making

it easy for operations teams to deploy, monitor, backup, and

scale MongoDB. Ops Manager was created by the

engineers who develop the database and is available as

part of MongoDB Enterprise Advanced. Many of the

capabilities of Ops Manager are also available with

MongoDB Cloud Manager, hosted in the cloud. Today,

Cloud Manager supports thousands of deployments,

including systems from one to hundreds of servers.

Ops Manager and Cloud Manager incorporate best

practices to help keep managed databases healthy and

optimized. They ensures operational continuity by

converting complex manual tasks into reliable, automated

procedures with the click of a button or via an API call:

• DeployDeploy.. Any topology, at any scale

• Upgrade.Upgrade. In minutes, with no downtime

• ScScale.ale. Add capacity, without taking the application

offline;

• ScScheduled Bacheduled Backups.kups. Customize to meet recovery

goals

• PPoint-in-time Recoveryoint-in-time Recovery.. Restore to any point in time,

because disasters aren't scheduled

• PPerformance Alerts.erformance Alerts. Monitor 100+ system metrics

and get custom alerts before the system degrades.

Ops Manager roles can be defined to IT group

administrators across the entire shared environment, and

delegated to individual project teams to provide access to

just the resources they have provisioned. From MongoDB

3.6, multiple Projects (each managing multiple MongoDB

clusters) can be placed under a single organization,

allowing operations teams to centrally view and administer

all Projects under the organization hierarchy.

Deployments and Upgrades

It must be simple for project teams to request allocation of

resources from the MongoDB resource pool, and for those

resources to then be provisioned and managed. Ops

Manager reliably orchestrates the tasks that administrators

have traditionally performed manually – provisioning a new

cluster, upgrades, restoring systems to a point in time, and

many other operational tasks.

Ops Manager provides the ability to create pre-provisioned

server pools. The Ops Manager agent can be installed

across a fleet of servers (physical hardware, VMs, AWS

instances, etc.) by a configuration management tool such

as Chef, Puppet, or Ansible. The server pool can then be

exposed to internal teams, ready for provisioning servers

into their local groups, either by the programmatic Ops

Manager API or the Ops Manager GUI. When users

request an instance, Ops Manager will remove the server

from the pool, and then provision and configure it into the

local group. It can return the server to the pool when it is

no longer required, all without sysadmin intervention.

Administrators can track when servers are provisioned

12

http://docs.mongodb.org/manual/tutorial/choose-a-shard-key/
http://docs.mongodb.org/manual/tutorial/choose-a-shard-key/
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://cloud.mongodb.com/

FigurFigure 6:e 6: Ops Manager self-service portal: simple, intuitive, and powerful. Deploy and upgrade clusters with a single click.

from the pool, and receive alerts when available server

resources are running low. Pre-provisioned server pools

allow administrators to create true, on-demand database

resources for private cloud environments.

Building upon server pools, Ops Manager offers certified

integration with Cloud Foundry. BOSH, the Cloud Foundry

configuration management tool, can install the Ops

Manager agent onto the server configuration requested by

the user, and then use the Ops Manager API to build the

desired MongoDB configuration. Once the deployment has

reached goal state, Cloud Foundry will notify the user of

the URL of their MongoDB deployment. From this point,

users can log in to Ops Manager to monitor, back-up, and

automate upgrades of their deployment.

Ops Manager is designed to adapt to problems as they

arise by continuously assessing state and making

adjustments as needed. Here’s how:

• Ops Manager agents are installed on servers (where

MongoDB will be deployed), either through

configuration management tools, or manually by an

administrator.

• The administrator creates a new design goal for the

system, either as a modification to an existing

deployment (e.g., upgrade, oplog resize, new shard), or

as a new system.

• The agents periodically check in with the Ops Manager

central server and receive the new design instructions.

• Agents create and follow a plan for implementing the

design. Using a sophisticated rules engine, agents

continuously adjust their individual plans as conditions

change. In the face of many failure scenarios – such as

server failures and network partitions – agents will

revise their plans to reach a safe state.

• Minutes later, the system is deployed, safely and reliably.

If the instance is a short-lived development environment, a

single click will terminate the instances and return the

servers to the resource pool, ready for consumption by

another team.

13

In addition to initial deployment, Ops Manager and Cloud

Manager make it possible to dynamically resize capacity by

adding shards and replica set members. Other

maintenance tasks such as upgrading MongoDB or

resizing the oplog can be reduced from dozens or

hundreds of manual steps to the click of a button, all with

zero downtime.

Monitoring

FigurFigure 7:e 7: Ops Manager provides real time & historic
visibility into the MongoDB deployment.

Ops Manager provides administrators and project owners

with visibility into the MongoDB service. Featuring charts,

custom dashboards, and automated alerting, Ops Manager

tracks 100+ key database and systems health metrics

including operations counters, memory, and CPU utilization,

replication status, open connections, queues, and any node

status.

The metrics are securely reported to Ops Manager and

Cloud Manager where they are processed, aggregated,

alerted and visualized in a browser, letting administrators

easily determine the health of MongoDB in real time. Views

can be based on explicit permissions, so project team

visibility can be restricted to their own applications, while

systems administrators can monitor all the MongoDB

deployments in the organization.

Historic performance can be reviewed in order to create

operational baselines and to support capacity planning.

Integration with existing monitoring tools is also

straightforward via the Ops Manager RESTful API, making

the deep insights from Ops Manager part of a consolidated

view across your operations.

Ops Manager and Cloud Manager allow administrators to

set custom alerts when key metrics are out of range. Alerts

can be configured for a range of parameters affecting

individual hosts, replica sets, agents and backup. Alerts can

be sent via SMS and email or integrated into existing

incident management systems such as PagerDuty and

HipChat to proactively warn of potential issues, before they

escalate to costly outages.

If using Cloud Manager, access to monitoring data can also

be shared with MongoDB support engineers, providing fast

issue resolution by eliminating the need to ship logs

between different teams.

Disaster Recovery: Backups &
Point-in-Time Recovery

A backup and recovery strategy is necessary to protect

your mission-critical data against catastrophic failure, such

as a fire or flood in a data center, or human error such as

code errors or accidentally dropping collections. With a

backup and recovery strategy in place, administrators can

restore business operations without data loss, and the

organization can meet regulatory and compliance

requirements. Taking regular backups offers other

advantages, as well. The backups can be used to seed new

environments for development, staging, or QA without

impacting production systems.

Ops Manager and Cloud Manager backups are maintained

continuously, just a few seconds behind the operational

system. If the MongoDB cluster experiences a failure, the

most recent backup is only moments behind, minimizing

exposure to data loss. Ops Manager and Cloud Manager

are the only MongoDB solutions that offer point-in-time

backup of replica sets and cluster-wide snapshots of

sharded clusters. You can restore to precisely the moment

you need, quickly and safely.

Because Ops Manager and Cloud Manager only read the

oplog, the ongoing performance impact is minimal – similar

to that of adding an additional replica to a replica set.

By using MongoDB Enterprise Advanced you can deploy

Ops Manager to control backups in your local data center,

or use Cloud Manager, which includes a fully managed

backup solution with a pay-as-you-go model. Dedicated

14

MongoDB engineers monitor user backups on a 24x365

basis, alerting operations teams if problems arise.

Integrating MongoDB with External
Monitoring Solutions

The Ops Manager and Cloud Manager API provides

integration with external management frameworks through

programmatic access to automation features and

monitoring data.

In addition to Ops Manager and Cloud Manager, MongoDB

Enterprise Advanced can report system information to

SNMP traps, supporting centralized data collection and

aggregation via external monitoring solutions. Review the

documentation to learn more about SNMP integration.

Key Takeaway

Ops Manager provides the management platform to

provision, monitor and backup the MongoDB service. Using

Ops Manager, the IT team can manage the MongoDB

resource pool as a central asset, shared by multiple project

teams.

Step 8: Cost Accounting &
Chargeback

How cost accounting and chargeback is managed is

largely dependent on specific organizational policies. There

are, however, best practices to observe:

• If those project teams consuming the service do not

bear proportionate costs, there is a risk of overuse and

depletion of available resources. Provisioned capacity

can be left idle by teams who have no motivation to

return it to the service’s resource pool.

• Conversely, if the resources are overpriced, the

consumers will make little if any use of them, instead

favoring less expensive options, including local business

unit resources or public cloud providers.

Accounting processes will typically begin with the

underlying infrastructure layer (i.e., servers and storage)

whose resources are consumed first. As services are built

on the underlying infrastructure, the chosen virtualization

technologies must supplement this with appropriate

charges for software, support, and administration costs.

Accounting Example: AWS
Tag-Based Cost Allocation

AWS is used to provide an example of cost accounting

within a shared resource pool. Each provisioned instance

includes the following tags, which are then used to identify

billable resource usage:

TTag Nameag Name SignificSignificanceance

user:Owner Username of the resource requestor

user:Stack Development / Test / Production

user:CostCenter Business unit or project team

user:Application Formal name of the application
consuming the resource

TTable 3:able 3: Using Tags for Cost Accounting

AWS monthly Custom Billing Reports can be generated

based on these tags, with expenses charged back to the

applicable cost center.

Key Takeaways

Cost accounting and chargeback policies are specific to

each organization. Many public and private cloud

infrastructures provide mechanisms to tracking and billing

the use of underlying infrastructure resources.

Step 9: Define the
Implementation Plan

With the variety of enterprise requirements for delivering

MongoDB as a Service, there is no single “out of the box"

template for an implementation plan. Using the

considerations presented in this whitepaper, MongoDB

consultants can apply best practices to collaborate with the

IT group in defining a plan that accelerates implementation,

while at the same time reducing risk.

15

http://docs.mongodb.org/manual/tutorial/monitor-with-snmp/
http://docs.mongodb.org/manual/tutorial/monitor-with-snmp/

Personnel Requirements

The IT group implementing the MongoDB service should

seek participation from representatives drawn from all

internal stakeholders. The primary service implementation

work may be performed by operations-capable developers

from within the organization’s own staff, or by a trusted

Systems Integrator (SI). However, active participation and

review throughout the development process should be

provided by:

• MongoDB-as-a-Service project management

• Business unit architects

• Operations staff who will assume responsibility of the

service

• Network and storage administrators

• Application developers who are the internal customers

for the first phase of the service

• Corporate security and compliance representatives

Augmenting the Team: MongoDB
Consulting Services

MongoDB Consulting Engineers should also be used as

extensions to the project team, bringing expertise and best

practices from other MongoDB-as-a-Service

engagements. A range of fixed-term engagements are

available to support you through design, testing, launch,

and ongoing management of the service:

• The MongoDB Private Cloud Accelerator consulting

package provides support from the experts to get your

MongoDB private cloud up and running.

• The MongoDB Health Check provides an assessment

of the service’s architecture design readiness and

operational policies.

• The Operations Rapid Start package gives your

operations and devops teams the skills and tools to run

and manage MongoDB with confidence.

• Once launched, a MongoDB Dedicated Consulting

Engineer provides ongoing advisory services to the IT

team from a named, experienced engineer.

These consulting packages complement a range of

services that can be provided for individual project teams

during the development phase of their applications,

including MongoDB schema design, sharding, and

performance tuning.

Learn more about the full range of MongoDB consulting

services.

Key Takeaways

Create a service implementation team with 360-degree

involvement of MongoDB and enterprise stakeholders.

Step 10: Production-Grade
DBaaS - Supported, Secure, and
Automated

We are the MongoDB experts. Over 4,300 organizations

rely on our commercial products, including startups and

more than half of the Fortune 100. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Stitch is a backend as a service (BaaS), giving

developers full access to MongoDB, declarative read/write

controls, and integration with their choice of services.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

16

https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

MongoDB Atlas: Database as a
Service For MongoDB

MongoDB Atlas is a cloud database service that makes it

easy to deploy, operate, and scale MongoDB in the cloud

by automating time-consuming administration tasks such

as database setup, security implementation, scaling,

patching, and more.

MongoDB Atlas is available on-demand through a

pay-as-you-go model and billed on an hourly basis.

It’s easy to get started – use a simple GUI to select the

public cloud provider, region, instance size, and features

you need. MongoDB Atlas provides:

• Security features to protect your data, with fine-grained

access control and end-to-end encryption

• Built in replication for always-on availability.

Cross-region replication within a public cloud can be

enabled to help tolerate the failure of an entire cloud

region.

• Fully managed, continuous and consistent backups with

point in time recovery to protect against data corruption,

and the ability to query backups in-place without full

restores

• Fine-grained monitoring and customizable alerts for

comprehensive performance visibility

• One-click scale up, out, or down on demand. MongoDB

Atlas can provision additional storage capacity as

needed without manual intervention.

• Automated patching and single-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB features

• Live migration to move your self-managed MongoDB

clusters into the Atlas service with minimal downtime

MongoDB Atlas can be used for everything from a quick

Proof of Concept, to test/QA environments, to powering

production applications. The user experience across

MongoDB Atlas, Cloud Manager, and Ops Manager is

consistent, ensuring that disruption is minimal if you decide

to manage MongoDB yourself and migrate to your own

infrastructure.

MongoDB Stitch: Backend as a
Service

MongoDB Stitch is a backend as a service (BaaS), giving

developers a REST-like API to MongoDB, and

composability with other services, backed by a robust

system for configuring fine-grained data access controls.

Stitch provides native SDKs for JavaScript, iOS, and

Android.

Built-in integrations give your application frontend access

to your favorite third party services: Twilio, AWS S3, Slack,

Mailgun, PubNub, Google, and more. For ultimate flexibility,

you can add custom integrations using MongoDB Stitch's

HTTP service.

MongoDB Stitch allows you to compose multi-stage

pipelines that orchestrate data across multiple services;

where each stage acts on the data before passing its

results on to the next.

Unlike other BaaS offerings, MongoDB Stitch works with

your existing as well as new MongoDB clusters, giving you

access to the full power and scalability of the database. By

defining appropriate data access rules, you can selectively

expose your existing MongoDB data to other applications

through MongoDB Stitch's API.

17

https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/stitch

Take advantage of the free tier to get started; when you

need more bandwidth, the usage-based pricing model

ensures you only pay for what you consume. Learn more

and try it out for yourself.

Conclusion

As more internal business units and project teams build

modern applications on MongoDB, IT groups can improve

agility, efficiency, accountability and governance by offering

MongoDB-as-a-Service. This white paper has been

designed to provide the top 10 considerations you make as

you embark on the next phase of industrializing MongoDB

consumption in your organization.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Stitch backend as a service (mongodb.com/

cloud/stitch)

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2017 MongoDB, Inc. All rights reserved.

18

https://www.mongodb.com/cloud/stitch
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/cloud/stitch

	Table of Contents
	Introduction1
	Step 1: Identify Common Workload Requirements1
	Step 2: Hardware & OS Selection3
	Step 3: Virtualization Strategy5
	Step 4: Enabling Multi-Tenant Services5
	Step 5: Enforcing Security Isolation between Tenants8
	Step 6: Meeting Service Level Agreement (SLA) Requirements9
	Step 7: Managing the MongoDB Service12
	Step 8: Cost Accounting & Chargeback15
	Step 9: Define the Implementation Plan15
	Step 10: Production-Grade DBaaS16
	MongoDB Atlas: Database as a Service For MongoDB17
	MongoDB Stitch: Backend as a Service17
	Conclusion18
	Resources18
	Introduction
	Step 1: Identify Common Workload Requirements
	Database Usage
	Architecture Design
	Operational Policies
	Key Takeaways

	Step 2: Hardware & OS Selection
	RAM & CPU
	Storage
	Operating System
	Key Takeaways

	Step 3: Virtualization Strategy
	Key Takeaways

	Step 4: Enabling Multi-Tenant Services
	Hypervisor-Based Virtual Machines
	Containers
	Process Separation
	Logical DB Separation
	Key Takeaways

	Step 5: Enforcing Security Isolation between Multiple Tenants
	Authentication
	Authorization
	Auditing
	Encryption
	Key Takeaways

	Step 6: Meeting Service Level Agreement (SLA) Requirements
	Maintaining Service Continuity with MongoDB Replica Sets
	Deploying Replica Sets in a Shared MongoDB Service
	Database Scaling with MongoDB Automatic Sharding
	Deploying Shards in a Shared MongoDB Service
	Key Takeaways

	Step 7: Managing the Service: Provisioning, Monitoring, and Disaster Recovery
	Deployments and Upgrades
	Monitoring
	Disaster Recovery: Backups & Point-in-Time Recovery
	Integrating MongoDB with External Monitoring Solutions
	Key Takeaway

	Step 8: Cost Accounting & Chargeback
	Accounting Example: AWS Tag-Based Cost Allocation
	Key Takeaways

	Step 9: Define the Implementation Plan
	Personnel Requirements
	Augmenting the Team: MongoDB Consulting Services
	Key Takeaways

	Step 10: Production-Grade DBaaS - Supported, Secure, and Automated
	MongoDB Atlas: Database as a Service For MongoDB
	MongoDB Stitch: Backend as a Service
	Conclusion
	Resources

